The effect of process parameters on the electrospun polystyrene fibers

Author:

CRISTINA BANCIU1,ADELA BĂRA1,ELENA CHIȚANU1,VIRGIL MARINESCU1,GABRIELA SBÂRCEA1,IOANA ION1

Affiliation:

1. National Institute for Research and Development in Electrical Engineering ICPE-CA 313 Spl. Unirii, 030138, Bucharest, Romania

Abstract

Electrospinning is one of the methods for obtaining nano/microfibers, using polymeric solutions. These nanofibrous membranes are highly porous with interconnected pores, having high specific surface area and small pore size, making them a suitable candidate for filtration applications. The properties of electrospun fibers are influenced by polymer solution, solvent, solution concentration, viscosity, electrical conductivity, electrical voltage, spinneret to collector distance etc. Expanded polystyrene is a polymeric product that is usually used for insulation and packaging. Recycling expanded polystyrene into nanofibers with applications in filtration could be useful from an economic point of view. The purpose of this study was to investigate the influence of expanded polystyrene polymer solution characteristics (concentration, viscosity) and the process parameters (applied voltage, distance between the tip and the collector plate, flow rate of the polymer solution) on the morphology and the properties of the obtained electrospun fibers. Therefore, three EPS solutions with 10, 15 and 20% wt. concentration were prepared and were electrospun under processing conditions with an applied voltage of 12, 15 and 18 kV, a spinneret-to-collector distance of 20 cm, a flow rate of solution of 1.5 and 2 mL/hour, a spinneret diameter of 0.8 mm and stationary copper substrate. The morphology of the electrospun fibers was observed by scanning electron microscopy. The mechanical properties were evaluated by tensile strength and elongation tests.

Publisher

The National Research and Development Institute for Textiles and Leather

Subject

Polymers and Plastics,General Environmental Science,General Business, Management and Accounting,Materials Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3