Degeneration Of Spinal Ganglion And Segmental Apparatus Of The Spinal Neurons In Sciatic Nerve Injury: An Experimental Study

Author:

Tolkachev Vladimir S.1ORCID,Bazhanov Sergey P.1ORCID,Matveeva Olga V.1ORCID,Korshunova Galina A.1ORCID,Shuvalov Stanislav D.1ORCID,Ulyanov Valdimir Yu.1ORCID,Ostrovskij Vladimir V.1ORCID

Affiliation:

1. Saratov State Medical University n.a. V.I. Razumovsky, Saratov, Russia

Abstract

Objective — To investigate the extent of degenerative changes in neurons of spinal ganglion and segmental apparatus in various injuries to sciatic nerve in the experiment on white rats. Material and Methods — The research involved 40 white non-pedigree male rats distributed among four groups. The animals of Group 1 (n=10) underwent the compression of nerve trunks with Mosquito clamp forceps for 15 minutes. In Group 2 (n=10), the animals had their nerve trunks ligated; and in Group 3, they had their nerves completely transected in their middle thirds. The separate group of control animals (n=10) suffered no damage to their sciatic nerves. Spinal cords and spinal ganglia at L4-L6 level were the material for histopathological examination. We calculated the number (percent) of degenerated neurons in spinal cords and spinal ganglia at the affected sides on Day 30, and compared them to those at the intact sides. Results — The number (percent) of degenerated neurons in spinal cord and spinal ganglion, expressed as Me (Q1; Q2), constituted 2.52% (1.92; 2.74) and 3.75% (2.37; 4.74) in Group 1, 9.27% (9.03; 9.94) and 16.74% (16.01; 18.22) in Group 2, 25.59% (24.36; 26.29) and 31.94% (31.44; 33.03) in Group 3, respectively. Depending on the number (percent) of degenerated neurons, we classified three grades of change manifestation: mild (Group 1), medium (Group 2), and severe (Group 3). No degenerated neurons were found in the control animals. Conclusion — The compression, ischemic exposure on the sciatic nerve, and complete anatomical transection of its trunk resulted in Wallerian degeneration, as well as degeneration of segmental apparatus in spinal cord neurons.

Publisher

LLC Science and Innovations

Subject

General Medicine

Reference11 articles.

1. Bersnev VP, Kockin GS, Izveckova TO. Practical Guide to Neurosurgery: in 2 volumes. Vol. 1. Saint Petersburg: RNHI n.a. AL Polenov. 2009; 291 p. https://search.rsl.ru/ru/record/01004639672.

2. Blagova NV. Normal Morphology of Spinal Cord Motor Neurons and Transection of the Sciatic Nerve in Adult Rats. PhD thesis abstract. Saransk, 2011; 23 p. https://www.elibrary.ru/item.asp?id=30359943.

3. Timofeeva LB. Normal Morphology of Spinal Ganglion and Transection of the Sciatic Nerve in Adult Rats. PhD thesis abstract. Saransk, 2011; 17 p. v https://www.elibrary.ru/item.asp?id=19360062.

4. Puanhvuan D, Chumnanvej S, Wongsawat Y. Linear model of peripheral nerve after surgical manipulation: Preliminary report in animal study and model shift. Annu Int Conf IEEE Eng Med Biol Soc 2013; 2013: 4973-4976. https://doi.org/10.1109/embc.2013.6610664.

5. Berg A, Zelano J, Cullheim S. Netrin G-2 ligand mRNA is downregulated in spinal motoneurons after sciatic nerve lesion. Neuroreport 2010; 21(11): 782-785. https://doi.org/10.1097/wnr.0b013e32833cadd8.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3