ENHANCING DISTRACTED DRIVER DETECTION WITH HUMAN BODY ACTIVITY RECOGNITION USING DEEP LEARNING

Author:

Zandamela Frank,Nicolls Fred,Kunene Dumisani,Stoltz Gene

Abstract

Deep learning has become popular owing to its high accuracy and ability to learn features automatically from input data. Various approaches are proposed in the literature to detect distracted drivers. However, the performance of these algorithms is typically limited to image datasets that have a similar distribution to the training dataset, which makes it difficult to apply them in real-world scenarios. To address this issue, this paper proposes a robust approach to detecting distracted drivers, based on recognising the unique body movements involved when a driver operates a vehicle. Experimental results indicate that this method outperforms current deep learning algorithms for detecting distracted drivers, resulting in a 6% improvement in classification accuracy and a two-fold improvement in overall performance (F1 score).

Publisher

Stellenbosch University

Subject

Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3