A MACHINE-LEARNING APPROACH TOWARDS SOLVING THE INVOICE PAYMENT PREDICTION PROBLEM

Author:

Schoonbee Louis,Moore Willem,Van Vuuren Jan

Abstract

Companies routinely experience difficulties in collecting debt incurred by their customers. As an alternative to the reactive techniques typically employed to increase a company’s ability to collect debt, preventative techniques could be employed to predict the payment behaviour of regular customers. Such a preventative technique, in the form of a machine-learning model embedded within a decision-support system, is proposed in this paper with a view to assisting companies in prioritising debt collection resources to address invoices that are most likely to be paid late. The system is capable of predicting payment behaviour outcomes linked to invoices as anticipating payment receipts during one of three intervals: 1ꟷ30 days late, 31ꟷ60 days late, or at least 61 days late. The underlying model of the decision support system is identified by selecting a suitable algorithm from among a pool of candidate machine-learning algorithms. This selection process requires the adoption of a sound methodological approach. A machine-learning development roadmap is proposed for this purpose, and applied in a practical, illustrative case study involving real industry invoice data. Keywords Invoice payment prediction; Machine learning

Publisher

Stellenbosch University

Subject

Industrial and Manufacturing Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A framework for modelling customer invoice payment predictions;Machine Learning with Applications;2024-09

2. A Quantitative Analysis of Default Risk Using Machine Learning and SHAP Value Interpretation;Proceedings of the International Conference on Business Excellence;2024-06-01

3. Forecasting User Payment Behavior Using Machine Learning;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3