Evaluation of a novel multimode interfacial rheometer

Author:

Ashkenazi Daniel1ORCID,Pham Kiet2ORCID,Vermant Jan3ORCID,Wagner Norman J.2ORCID,Gottlieb Moshe1ORCID

Affiliation:

1. Department of Chemical Engineering, Ben Gurion University of the Negev 1 , Beer Sheva 8410501, Israel

2. Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware 2 , Newark, Delaware 19716

3. Department of Materials, ETH-Zürich 3 , CH-8093 Zürich, Switzerland

Abstract

Determination of the rheological properties and the interfacial structure–property relationships for complex fluid–fluid interfaces can be of crucial importance for the understanding of physiological and biomedical systems, designing and engineering industrial processes, and developing environmental remediation technologies. For the measurement of interfacial shear rheological material functions, it has been determined that the control of the surface pressure during the application of deformation is essential for obtaining reproducible data especially when measuring complex interfaces, such as particle- and polymer-laden interfaces. Moreover, the study of complex fluid interfaces is complicated by kinematically mixed interfacial flow fields, which include both shear and dilatation (shape and area changes), leading to a possible complex flow history. To address this, specialized rheometers have been developed to provide clear kinematic conditions. For instance, a radial trough has been introduced to enhance the study of dilatational interfacial rheology, effectively solving the challenges posed by the mixed flow fields typical in standard rectangular Langmuir–Pockels (LP) troughs or pendant drops. In the present work, we utilize a new trough instrument, the Quadrotrough (QT), capable of performing on the same device (and sample) independent dilatational and shear deformations at the air/liquid interface under strain and surface pressure control. Brewster angle microscopy (BAM) imaging is carried out in situ simultaneously with rheological measurements. Thus, the QT embodies the combined advantages of the circular trough and the controlled surface pressure shear interfacial rheometer. The interfacial rheology of poly(tert-butyl methacrylate) at the air/water interface was measured for both pure dilatation and pure shear in steady and small amplitude oscillatory (SAO) dilatation (D) and shear (S) modes on the same interface. BAM images were obtained during shear and compression. The results obtained by the QT were highly reproducible and in good agreement with measurements performed previously using the LP trough-mounted double wall ring rheometer and the radial trough. The Hencky strain model was employed to derive steady shear and dilatational interfacial moduli. Very good agreement was observed between the steady and complex shear moduli. However, the dilatational moduli measured under steady compression were markedly smaller than those measured by small amplitude oscillatory dilatational at fixed molecular areas, further highlighting the complicating factor of deformation history on material properties for complex interfaces. In summary, the QT has been shown to be a valuable tool for exploring interfacial rheology and providing insights into complex interfacial systems.

Funder

EUSMI

NIST Center for Neutron Research

Publisher

Society of Rheology

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3