Imaging of the microstructure of Carbopol dispersions and correlation with their macroelasticity: A micro- and macrorheological study

Author:

Oelschlaeger Claude1,Marten Jonas1,Péridont Florian1ORCID,Willenbacher Norbert1ORCID

Affiliation:

1. Institute of Mechanical Process Engineering and Mechanics, Applied Mechanics Group, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

We developed a new data analysis strategy, the so-called micro-rheo-mapping technique, based on multiparticle tracking experiments to obtain an accurate and direct visualization of the microstructure of commercial acrylate thickeners of Carbopol-type with high (Ultrez 10), intermediate (ETD 2020), and low (ETD 2050) degree of crosslinking. At low polymer concentration, aggregates made of several primary Carbopol particles are formed with an average diameter of 43 ± 11, 56 ± 14, and 10 ± 2.5 μm for Ultrez 10, ETD 2020, and ETD 2050, respectively. For ETD 2050, the least crosslinked thickener, the shell of dangling polymer chains covering the aggregate surface is thicker than for ETD 2020 and Ultrez 10. At technically relevant polymer concentrations, our results indicate, for all three thickeners, that the microstructure is highly heterogeneous with regions of different crosslink densities. One region inaccessible for tracer particles corresponding to a mixture of polydisperse aggregates and individual primary particles with a core mesh size less than 200 nm and a second, diluted enough to be accessible and which exhibits both elastic and viscous characteristics. The study of the impact of pH, polymer concentration, and crosslink density on these local structural and viscoelastic heterogeneities as well as macrorheological properties allowed us to establish a correlation between microstructure and macroelasticity. In particular, we found that the bulk shear modulus strongly depends on the fraction of inaccessible areas, making this microscopic parameter most relevant for describing the macroelasticity of Carbopol gels, whereas the local elasticity of the interstitial regions is of minor importance.

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3