Large amplitude oscillatory shear behavior of thermoresponsive hydrogels: Single versus double network

Author:

Tarashi Sara1ORCID,Nazockdast Hossein1,Bandegi Alireza2ORCID,Shafaghsorkh Saeid3,Sodeifian Gholamhossein45,Foudazi Reza26ORCID

Affiliation:

1. Polymer Engineering Department, Amirkabir University of Technology, Tehran, Iran

2. Department of Chemical and Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003-0001

3. Mechanical Engineering Department, University of Kashan, Kashan, Iran

4. Chemical Engineering Department, Faculty of Engineering, University of Kashan, Kashan, Iran

5. Laboratory of Advanced Rheology and Rheometry, Faculty of Engineering, University of Kashan, Kashan, Iran

6. Department of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019-2115

Abstract

Double network (DN) hydrogels have been recognized as new tough materials for several industries due to their precise structural platforms and significant properties. However, a comprehensive understanding of microstructural changes of DN hydrogels under large deformations is required to extend their applications. In this work, we use the large amplitude oscillatory shear (LAOS) technique to study the nonlinear response of a thermoresponsive κ-carrageenan/polyacrylamide DN system and its nanocomposite containing graphene oxide (GO) in comparison to its single network components. The results show a combination of strain stiffening and shear thickening nonlinear responses. The elastic intracycle strain stiffening was mainly attributed to the shear-induced increase in the elasticity of network chains and non-Gaussian stretching of individual chains. In addition, the orientation of the κ-carrageenan double helix segments and their enhancing effect on molecular orientation could be proposed as another possible mechanism of strain stiffening. The viscous intracycle shear thickening is also interpreted by two mechanisms of shear-induced temporary structure formation and reformation of dissociated physical interactions. It is also found that the GO nanosheets could contribute to the viscoelastic response by increasing the molecular interactions and, thus, amplification of energy dissipation. Furthermore, temperature dependency of the DN hydrogel owing to the conformational changes of the κ-carrageenan network at sufficiently high temperatures is used to investigate the effect of temperature on nonlinear behaviors. Increasing the temperature is found to have a significant decreasing effect on viscous nonlinearity, while its effect on the elastic nonlinearity was strongly dependent on the strain amplitude. This study provides a better understanding of the correlation between the microstructure and viscoelastic properties for designing tough hydrogels.

Funder

Amirkabir University of Technology

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3