Tribological variable-friction coefficient models for the simulation of dense suspensions of rough polydisperse particles

Author:

Ruiz-Lopez Jose A.1ORCID,Prasanna Kumar Sagaya S.2ORCID,Vazquez-Quesada Adolfo3ORCID,de Vicente Juan1ORCID,Ellero Marco245ORCID

Affiliation:

1. F2N2Lab, Magnetic Soft Matter Group and Excellence Research Unit “Modeling Nature” (MNat), Department of Applied Physics, Faculty of Sciences, University of Granada, Fuentenueva s/n, 18071 Granada, Spain

2. Basque Center for Applied Mathematics (BCAM), Alameda de Mazarredo 14, 48009 Bilbao, Spain

3. Departamento de Física Fundamental, UNED, Apartado 60141, 28080 Madrid, Spain

4. IKERBASQUE, Basque Foundation for Science, Calle de María Díaz de Haro 3, 48013 Bilbao, Spain

5. Zienkiewicz Centre for Computational Engineering (ZCCE), Swansea University, Swansea SA1 8EN, United Kingdom

Abstract

The rheology of concentrated suspensions of particles is complex and typically exhibits a shear-thickening behavior in the case of repulsive interactions. Despite the recent interest arisen, the causes of the shear-thickening remain unclear. Frictional contacts have been able to explain the discontinuous shear thickening in simulations. However, the interparticle friction coefficient is considered to be constant in most simulations and theoretical works reported to date despite the fact that tribological experiments demonstrate that the friction coefficient can not only be constant (boundary regime) but also decrease (mixed regime) or even increase (full-film lubrication regime), depending on the normal force and the relative velocity between the particles and the interstitial liquid between them. Interestingly, the transition between the boundary regime and the full-lubrication regime is governed by the particle average roughness. Particle-level simulations of suspensions of hard spheres were carried out using short-range lubrication and roughness-dependent frictional forces describing the full Stribeck curve. Suspensions with different particle’s roughness were simulated to show that the particle roughness is a key factor in the shear-thickening behavior; for sufficiently rough particles, the suspension exhibits a remarkable shear-thickening, while for sufficiently smooth particles, the discontinuous shear-thickening disappears.

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3