Tailoring the linear viscoelastic response of industrial double dynamics networks through the interplay of associations

Author:

Carillo Consiglia12,Zoellner Stephan3,van Ruymbeke Evelyne4ORCID,Vlassopoulos Dimitris12ORCID

Affiliation:

1. FORTH, Institute of Electronic Structure and Laser, Heraklion 70013, Crete, Greece

2. Department of Materials Science and Technology, University of Crete, Heraklion 70013, Crete, Greece

3. TESA SE, 22848 Norderstedt, Germany

4. Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain, Bio and Soft Matter Division (BSMA), Louvain-la-Neuve, Belgium

Abstract

We investigate the linear viscoelastic properties of industrial pressure sensitive adhesives comprising double networks with an entangled acrylate-based polymer and two types of intermolecular associations (crosslinking), permanent (epoxide) and reversible (metal-chelate), having different compositions. A combination of shear rheometry and an appropriately modified version of the Time Marching Algorithm (TMA) allows to probe and analyze the behavior of the different double dynamic networks, in particular, the effects of the type and amount of crosslinks on their linear viscoelastic spectra. To this end, the dynamics of the double networks are compared with the respective individual responses of the polymeric component without crosslinks and the single networks (possessing only physical or only chemical crosslinks), in order to quantify their contributions to the relaxation mechanisms, particularly the interplay between disentanglement and bond association/dissociation processes. With the help of the TMA model, we also examine the respective roles of the lifetime of stickers, polydispersity, and molar mass. Triggered by the good comparison between predictions and experimental data, we propose a framework to tune material parameters in order to obtain a desired viscoelastic behavior.

Funder

European Commission

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3