Extensional rheology and flow-induced crystal alignment in polypropylene ionomers

Author:

López-Barrón Carlos R.1ORCID,Throckmorton Joseph A.1ORCID,Lin Tzu-Pin1ORCID

Affiliation:

1. ExxonMobil Chemical Company, Baytown, Texas 77520

Abstract

The nonlinear response to the uniaxial extension of a series of isotactic polypropylene (iPP) ionomers is studied by melt rheology and ex situ small and wide-angle x-ray scattering measurements. These ionomers bear iPP backbones decorated with pendant aluminum carboxylate groups. Minuscule amounts of ion groups (<0.1 mol. %) are sufficient to produce remarkably high extensional strain hardening ratios of up to 200 and maximum stretch ratios (before breakage) of up to 50. Small and wide-angle scattering measurements from an iPP ionomer sample quenched during an extensional flow reveal monotonic correlations between Hencky strain, crystallinity, and crystal alignment. These results indicate a direct correlation between extensional stress and the chain alignment in the ionomer melt. Intriguingly, the ion clusters in the ionomer show no alignment induced by extensional deformation, suggesting undetermined rearrangements involving cluster dissociation and reassociation that occur during the flow. Slow stress relaxation, after flow cessation, was measured in the ionomers, in sharp contrast to much faster relaxation typically observed in the iPP homopolymer. Stress relaxation is not concomitant with a decrease in crystal alignment, which indicates that chain recoiling is not the stress relaxation mechanism in iPP ionomers.

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3