Pair interactions between viscous drops in a viscoelastic matrix in free shear: Transition from passing to tumbling trajectories

Author:

Tarafder Anik1,Malipeddi Abhilash Reddy1ORCID,Sarkar Kausik1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering, The George Washington University , Washington, DC 20052

Abstract

Shear-induced pair interactions between viscous drops suspended in a viscoelastic matrix are numerically investigated examining the effects of elasticity and drop deformability on their post-collision trajectory. Two different trajectory types are identified depending on the Weissenberg number Wi and capillary number Ca. Drops suspended in a Newtonian matrix (Wi = 0.0) show a passing trajectory where drops slide past each other and separate in the stream-wise direction. However, when increasing the Weissenberg number above a critical value, a tumbling/doublet trajectory is observed where two drops rotate around the midpoint of the line joining their centers, as was also seen previously for rigid particles. The tumbling trajectory is explained by investigating the flow around a single drop in shear. Elasticity generates a larger region of spiraling streamlines around a drop, which, during a pair interaction, traps the second drop giving rise to the tumbling pair. Decreasing deformability (lower Ca) and increasing viscoelasticity (higher Wi) favor a tumbling trajectory. With simulations sweeping the parameter space, we obtain a phase plot of the two different trajectories as functions of Ca and Wi. Treating the tension along the curved streamlines due to the non-zero first normal stress difference in the viscoelastic medium as an enhancement to the interfacial tension, we have developed an approximate force balance model for the zone of spiraling streamlines. It qualitatively captures the observed scaling of the critical Ca and Wi values at the phase boundary. The effects of unequal size, initial configuration, and non-unity viscosity ratio are briefly investigated.

Funder

Directorate for Engineering

National Science Foundation

George Washington University

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference75 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3