No yield stress required: Stress-activated flow in simple yield-stress fluids

Author:

Pagani G.1ORCID,Hofmann M.1ORCID,Govaert L. E.2ORCID,Tervoort T. A.1ORCID,Vermant J.1ORCID

Affiliation:

1. Department of Materials, ETH Zurich 1 , 8093 Zurich, Switzerland

2. Department of Mechanical Engineering, Eindhoven University of Technology 2 , 5612 AZ Eindhoven, The Netherlands

Abstract

An elastoviscoplastic constitutive equation is proposed to describe both the elastic and rate-dependent plastic deformation behavior of Carbopol® dispersions, commonly used to study yield-stress fluids. The model, a variant of the nonlinear Maxwell model with stress-dependent relaxation time, eliminates the need for a separate Herschel–Bulkley yield stress. The stress dependence of the viscosity was determined experimentally by evaluating the steady-state flow stress at a constant applied shear rate and by measuring the steady-state creep rate at constant applied shear stress. Experimentally, the viscosity’s stress-dependence was confirmed to follow the Ree–Eyring model. Furthermore, it is shown that the Carbopol® dispersions used here obey time-stress superposition, indicating that all relaxation times experience the same stress dependence. This was demonstrated by building a compliance mastercurve using horizontal shifting on a logarithmic time axis of creep curves measured at different stress levels and by constructing mastercurves of the storage- and loss-modulus curves determined independently by orthogonal superposition measurements at different applied constant shear stresses. Overall, the key feature of the proposed constitutive equation is its incorporation of a nonlinear stress-activated change in relaxation time, which enables a smooth transition from elastic to viscous behavior during start-up flow experiments. This approach bypasses the need for a distinct Herschel–Bulkley yield stress as a separate material characteristic. Additionally, the model successfully replicates the observed steady-state flow stress in transient-flow scenarios and the steady-state flow rate in creep experiments, underlining its effectiveness in capturing the material’s dynamic response. Finally, the one-dimensional description is readily extended to a full three-dimensional finite-strain elastoviscoplastic constitutive equation.

Funder

Eidgenössische Technische Hochschule Zürich

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Society of Rheology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3