Z-shaped dejamming phase diagram of colloidal gels

Author:

Xia Bin1ORCID,Li Shoubo1ORCID,Wang Xiaorong12ORCID

Affiliation:

1. School of Chemical Science and Engineering, Tongji University 1 , Shanghai 200092, China

2. Institute for Advanced Study, Tongji University 2 , Shanghai 200092, China

Abstract

For physically gelled colloidal suspensions, there are two routes to transform the gel from solid to liquid. One is to raise the temperature, and the other is to increase the shear deformation. In this investigation, we found that the phase boundary of this solid-to-liquid transformation exhibits a surprising Z-shaped curve in the strain-temperature plane. This nonmonotonic feature in phase transition appears to be present in various nanoparticle-filled colloidal gels with significant differences in chemical composition, filler type, structure, particle shape, average diameter, and particle size distribution. By applying the Kraus model to the breakage and restoration of filler networks and comparing our findings to nonequilibrium glassy behavior, we found that this nonmonotonic phenomenon can be theoretically predicted by combining the glassy melting kinetics of filler networks at high temperatures with the viscosity-retarded dissociation between particles at low temperatures.

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3