Thixotropy, antithixotropy, and viscoelasticity in hysteresis

Author:

Wang Yilin123ORCID,Ewoldt Randy H.123ORCID

Affiliation:

1. Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign 1 , Urbana, Illinois 61801

2. Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign 2 , Urbana, Illinois 61801

3. Joint Center for Energy Storage Research, Argonne National Laboratory 3 , Lemont, Illinois 60439

Abstract

Thixotropy, antithixotropy, and viscoelasticity are three types of time-dependent dynamics that involve fundamentally different underlying physical processes. Here, we show that the three dynamics exhibit different signatures in hysteresis by examining the fingerprints of the simplest thixotropic kinetic model, a new antithixotropic model that we introduce here, and the Giesekus model. We start by showing that a consistent protocol to generate hysteresis loops is a discrete shear-rate controlled ramp that begins and ends at high shear rates, rather than at low shear rates. Using this protocol, we identify two distinguishing features in the resulting stress versus shear rate loops. The first is the direction of the hysteresis loops: clockwise for thixotropy, but counterclockwise for viscoelasticity and antithixotropy. A second feature is achieved at high ramping rates where all responses lose hysteresis: the viscoelastic response shows a stress plateau at low shear rates due to lack of stress relaxation, whereas the thixotropic and antithixotropic responses are purely viscous with minimal shear thinning or thickening. We establish further evidence for these signatures by experimentally measuring the hysteresis of Laponite suspensions, carbon black suspensions, and poly(ethylene oxide) solutions, each representing a historically accepted example of each class of material behavior. The signatures measured in experiments are consistent with those predicted by the three models. This study reveals different fingerprints in hysteresis loops associated with thixotropy, antithixotropy, and viscoelasticity, which may be helpful in distinguishing the three time-dependent responses.

Funder

U.S. Department of Energy

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3