Theoretical rheo-physics of silk: Intermolecular associations reduce the critical specific work for flow-induced crystallization

Author:

Schaefer Charley1ORCID,McLeish Tom C. B.1ORCID

Affiliation:

1. Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom

Abstract

Silk is a semidilute solution of randomly coiled associating polypeptide chains that crystallize following the stretch-induced disruption, in the strong extensional flow of extrusion, of the solvation shell around their amino acids. We propose that natural silk spinning exploits both the exponentially broad stretch distribution generated by associating polymers in extensional flow and the criterion of a critical concentration of sufficiently stretched chains to nucleate flow-induced crystallization. To investigate the specific-energy input needed to reach this criterion in start-up flow, we have coupled a model for the Brownian dynamics of a bead-spring-type chain, whose beads represent coarse-grained Gaussian chain segments, to the stochastic, strain-dependent binding and unbinding of their associations. We have interpreted the simulations with the aid of analytic calculations on simpler, tractable models with the same essential physical features. Our simulations indicate that the associations hamper chain alignment in the initial slow flow, but, on the other hand, facilitate chain stretching at low specific work at later, high rates. We identify a minimum in the critical specific work at a strain rate just above the stretch transition (i.e., where the mean stretch diverges), which we explain in terms of analytical solutions of a two-state master equation. We further discuss how the silkworm appears to exploit the chemical tunability of the associations to optimize chain alignment and stretching in different locations along the spinning duct: this delicate mechanism also highlights the potential biomimetic industrial benefits of chemically tunable processing of synthetic association polymers.

Funder

Engineering and Physical Sciences Research Council

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3