Universal flow-induced orientational ordering of colloidal rods in planar shear and extensional flows: Dilute and semidilute concentrations

Author:

Chun Byoungjin1ORCID,Jung Hyun Wook1ORCID

Affiliation:

1. Department of Chemical and Biological Engineering, Korea University , Seoul 02841, Republic of Korea

Abstract

The design of flow processes to build a macroscopic bulk material from rod-shaped colloidal particles has drawn considerable attention from researchers and engineers. Here, we systematically explore and show that the characteristic strain rate of the flow universally determines the orientational ordering of colloidal rods. We employed the fluctuating lattice Boltzmann method by simulating hydrodynamically interacting Brownian rods in a Newtonian liquid moving under various flow types. By modeling a rigid rod as a chain of nonoverlapping solid spheres with constraint forces and torque, we elucidate rigid rod dynamics with an aspect ratio (L/d) either 4.1 or 8.1 under various rotational Péclet number (Per) conditions. The dynamics of colloidal rods in dilute (nL3=0.05) and semidilute suspensions (nL3=1.1) were simulated for a wide range of Per (0.01<Per<1000) under shear flows including Couette and Poiseuille flows in a planar channel geometry, and an extensional and mixed-kinematics flow in a periodic four-roll mill geometry, where n is the number density, and d and L are the diameter and length of the rod, respectively. By evaluating the degree of orientational alignment of rods along the flows, we observed that there is no significant difference between flow types, and the flow-induced ordering of rods depends on the variation of Per up to moderate Per (Per<100). At a high Per (Per>100), the degree of orientational ordering is prone to diversify depending on the flow type. The spatial inhomogeneity of the strain-rate distribution leads to a substantial decrease in the orientational alignment at high Per.

Funder

National Research Foundation of Korea

Ministry of Education

Publisher

Society of Rheology

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3