Structural, topological, and rheological characteristics of entangled short-chain branched polymer melts under shear flow in comparison with the linear analog

Author:

Choe Donghun1ORCID,Jeong Seung Heum2,Baig Chunggi1ORCID

Affiliation:

1. School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST) 1 , UNIST-gil 50, Ulsan 44919, South Korea

2. Lotte Chemical Institute of Technology 2 , 115, Gajeongbuk-ro, Yuseong-gu, Daejeon 34110, South Korea

Abstract

We present a detailed analysis of the general influence of short branches on the structural, topological, and rheological behaviors of entangled short-chain branched (SCB) polyethylene (PE) melt systems under shear flow via direct comparison with the corresponding linear analogs using extensive atomistic nonequilibrium molecular dynamics (NEMD) simulations, for a wide range of flow strengths. In comparison with the linear melt, the SCB systems generally exhibit more compact chain structures and larger dynamic resistance, in response to an imposed flow field at all flow strengths. These features essentially arise from (i) the increased chain stiffness due to the torsional restriction of backbone atoms around the branch points and (ii) the fast random Brownian motion of short branches via their very short characteristic relaxation time. We analyzed various structural and rheological properties, such as anisotropic chain dimension and orientation and their detailed distributions, topological characteristics of the entanglement network, material functions, chain rotation dynamics, and flow birefringence. Distinctive physical characteristics of the entangled SCB systems exposed by these individual properties can be consistently understood based on the fundamental structural and dynamical roles of short branches. These findings are considered informative in our systematic understanding and prediction for the general rheological behaviors of long entangled SCB polymer systems under flow, and in tuning the material properties of SCB polymers in practical applications.

Funder

Ministry of Trade, Industry and Energy

Publisher

Society of Rheology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3