Coupling a torque rheometer with an ultrasonic velocity profiler for evaluating multiphase fluids in oscillatory shear flows

Author:

Ohie Kohei1ORCID,Yoshida Taiki2ORCID,Tasaka Yuji1ORCID

Affiliation:

1. Laboratory for Flow Control, Faculty of Engineering, Hokkaido University 1 , Sapporo, Japan

2. National Institute of Advanced Industrial Science and Technology 2 , Tsukuba, Japan

Abstract

We propose a torque rheometer coupled with an ultrasonic velocity profiler (UVP) for evaluating multiphase fluids as bulk rheology in oscillatory shear flows. The rheometer mainly consists of wide-gap coaxial cylinders, where the outer cylinder is sinusoidally oscillated and the inner cylinder is fixed to a torque sensor for measuring the wall shear stress. Based on Cauchy’s equation of motion, the spatiotemporal distribution of the shear stress is obtained from the velocity information and the wall shear stress as a boundary condition. This rheometer was applied to a carboxymethyl cellulose aqueous solution and compared with a standard torque-type rheometer. The results of the evaluated viscoelastic properties agreed well with each other, indicating the validity of the proposed rheometry. To further investigate the applicability of the rheometer to multiphase fluids, suspensions of solid spherical particles with a diameter of 220μm with volume fraction of 0.8–3.4% were measured, which are out of the applicable ranges of the standard rheometer. For volume fractions up to 3% where the UVP measurement is available, the relative viscosity agrees well with a theoretical formula. This indicates the applicability of the method to examine multiphase fluids.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

ENEOS Tonengeneral Research/Development Encouragement & Scholarship Foundation

Publisher

Society of Rheology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3