Study of new spring common wheat samples from the world collection in the conditions of the Ryazan region

Author:

Barkovskaya T. A.1ORCID,Gladysheva O. V.1,Zuev E. V.2ORCID,Kokoreva V. G.1ORCID

Affiliation:

1. Institute of Seed production and Agrotechnologies, Branch of the Federal Budgetary Scientific Institution “Federal Research Agro-Engineering Center VIM”

2. FSBSI “Federal Research Center All-Russian Institute of genetic resources of plants named after N.I. Vavilov”

Abstract

In the conditions of the Ryazan region there have been studied 64 spring common wheat varieties from the collection of the Federal Research Center VIGRR named after Vavilov in order to identify valuable traits for use in breeding. Field trials were carried out in the collection nursery on dark gray forest heavy loamy soil in 2018–2022, using the methodological recommendations of the Federal Research Center VIGRR named after Vavilov. There has been established that the highest yields (more than 5.0 t/ha) were formed by the varieties ‘Arseya’, ‘Maestro’ (Ryazan region), ‘KWS Akvilon’, ‘Ethos’ (Germany), ‘KWS Torridon’ (Great Britain), ‘Odeta’ (Czech Republic), ‘Calispero’ (France), which was on 29.9–49.9 % higher than the mean variety productivity in the trial. Yield stability with the least variation (Cv) was established for the varieties from the Central region – RIMA, ‘Arseya’ (Ryazan region), ‘Zlata’ (Moscow region) and ‘Omskaya 36’ (West Siberian region) with 3.1–9.6 %. The studied assortment of plant heights was divided into groups, such as dwarfs (< 60 cm) – 4.7 %, semi-dwarfs – 12.5 %, medium-sized – 75.0 %, tall – 7.8 %. There were identified 8 early ripening varieties ‘Chelyaba 2’ (Chelyabinsk region), ‘Odeta’ (Czech Republic), ‘Zlata’ (Moscow region), ‘Novosibirskaya 29’, ‘Novosibirskaya 15’, ‘Polyushka’ (Novosibirsk region), ‘M-83-1531’ (USA), ‘Burlak’ (Ulyanovsk region). The varieties ‘Voevoda’ and ‘Favorit’ (Saratov region) showed high resistance to various pathogens. There has been found a strong correlation between productivity and the density of productive stems with r = 0.753±0.084. 0.808±0.075, an average correlation with a number of grains per head with r = 0.427±0.115. 0.716±0.089 and grain weight per head with r = 0.374±0.118...0.689±0.092. Grain weight per head was largely determined by a number of grains per head with r = 0.621±0.099. 0.824±0.072.

Publisher

FSBSI Agricultural Research Center Donskoy

Reference15 articles.

1. Amunova O.S., Volkova L.V., Zuev E.V., Kharina A.V. Iskhodnyi material dlya selektsii myagkoi yarovoi pshenitsy v usloviyakh Kirovskoi oblasti [Initial material for spring common wheat breeding in the Kirov region] // Agrarnaya nauka Evro-Severo-Vostoka. 2021. № 22(5). S. 661–675. DOI: 10.30766/2072-9081.2021.22.5.661-675

2. Barkovskaya T.A., Gladysheva O.V., Kokoreva V.G. Vysokoproduktivnyi sort yarovoi myagkoi pshenitsy Maestro dlya Tsentral'nogo Nechernozem'ya [Highly productive spring common wheat variety ‘Maestro’ for the Central Non-Blackearth Region] // Vestnik rossiiskoi sel'skokhozyaistvennoi nauki. 2022. № 2. S. 21–24. DOI: 10.30850/vrsn/2022/2/21-24

3. Belan I.A., Rosseeva L.P., Blokhina N.P., Grigor'ev Yu.P., Mukhina Ya.V., Trubacheeva N.V., Pershina L.A. Resursnyi potentsial sortov pshenitsy myagkoi yarovoi dlya uslovii Zapadnoi Sibiri i Omskoi oblasti (analiticheskii obzor) [Resource potential of spring common wheat varieties for the conditions of Western Siberia and the Omsk region (analytical review)] // Agrarnaya nauka Evro-Severo-Vostoka. 2021. № 22(4). S. 449–465. DOI: 10.30766/2072-9081.2021.22.4.449-465

4. Demina I.F. Rezul'taty izucheniya kollektsionnykh obraztsov pshenitsy myagkoi yarovoi v usloviyakh Srednego Povolzh'ya [Study results of collection samples of spring common wheat in the conditions of the Middle Volga region] // Agrarnaya nauka Evro-Severo-Vostoka. 2020. № 21(6). S. 653–659. DOI: 10.30766/2072-9081.2020.21.6.653-659

5. Dospekhov B.A. Metodika polevogo opyta (s osnovami statisticheskoi obrabotki rezul'tatov issledovanii) [Methodology of a field trial (with the basics of statistical processing of the study results)]. 5-е izdanie, pererab. i dop., stereotip. izd. M.: Al'yans, 2014. 351 s.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3