Intelligent 3D Analysis for Detection and Classification of Breast Cancer

Author:

Mohamad samuri Suzani,Megariani Try Viananda Nova

Abstract

Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. Mammography has been one of the most reliable methods for early detection of breast carcinomas. However, it is difficult for radiologists to provide both accurate and uniform evaluation for the enormous mammograms generated in widespread screening. Breast cancer computer aided diagnosis (CAD) systems can provide such help and they are important and necessary for breast cancer control. Micro calcifications and masses are the two most important indicators of malignancy, and their automated detection is very valuable for early breast cancer diagnosis. Since masses are often indistinguishable from the surrounding parenchymal, automated mass detection and classification is even more challenging. This research presents algorithms for building a classification system or CAD, especially to obtain the different characteristics of mass and micro calcification using association technique based on classification. Starting with an individual-specific deformable of 3D breast model, this modelling framework will be useful for tracking visible tumors between mammogram images, as well as for registering breast images taken from different imaging modalities. From the results, the classifier developed able to perform well by successfully classifying the cancer and non-cancer (normal) images with the accuracy of 97%. Apart from that, by applying color map to the final results of segmentation provides a more interesting display of information and gives more direction to the purpose of image processing, which distinguishes between cancerous and non-cancerous tissues.

Publisher

Universitas Andalas

Subject

General Economics, Econometrics and Finance

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. CLASSIFICATION MODEL FOR BREAST CANCER MAMMOGRAMS;IIUM Engineering Journal;2022-01-04

2. Microscopic Tumour Classification by Digital Mammography;Journal of Healthcare Engineering;2021-02-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3