Development of Measuring Instruments for Lung Vital Capacity and Human Respiratory Rate Based on Fiber Optic Sensors

Author:

Roza Lia Mega,Harmadi Harmadi,Muttaqin Afdhal

Abstract

The development of measuring instruments for vital lung capacity and human respiratory rate based on the fiber-optic sensor has a system consisting of a laser diode as a light source, optical fiber as a waveguide, and OPT101 as a photodetector. This research consists of three stages: hardware design, software design, and data analysis. Each component used is tested and then tested on the entire system to determine each component's performance when used together. In the software system, the analog signal in the form of voltage from OPT101 is converted into an ADC value by an analog-to-digital converter. Based on the ADC value obtained, the threshold value is determined as the threshold for reading the respiratory rate. The number of ADC values ​​during the measurement of vital lung capacity is then converted to volume. Testing of measuring instruments is carried out by comparing the results of instruments developed with a standard medical measuring device. The results of the tests and analyses that have been carried out have obtained an accuracy value of 92.62% for the measurement of vital lung capacity, 95.14% for the measurement of respiratory rate, and 92.62% for the measurement of the respiratory rate of variations in activity.

Publisher

Universitas Andalas

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Business and International Management

Reference19 articles.

1. AM, U., Mathew, E., Viswam, A. K. S., & PA, S. (2020). Vital Capacity Measurement using Intensity Modulated Optical Fiber Sensor. Australian Journal of Electrical and Electronics Engineering, 17(3), 183–187.

2. Damayanti, S. (2016). Study Komparatif Kapasitas Vital Paru dan Saturasi Oksigen pada Atlet Futsal dan Non Atlet di Yogyakarta. Jurnal Keperawatan Respati Yogyakarta, 3(2), 23–34.

3. Fidanboylu, K., & Efendioglu, H. S. (2009). Fiber optic sensors and their applications. 5th International Advanced Technologies Symposium (IATS'09), 6, 2–3.

4. Guang, W., Baraldo, M., & Furlanut, M. (1995). Calculating percentage prediction error: a user's note. Pharmacological Research, 32(4), 241–248.

5. Heidaryan, E. (2019). A note on model selection based on the percentage of accuracy-precision. Journal of Energy Resources Technology, 141(4).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3