Optimization of Thermal Power Plant Operations Using Genetic Algorithms

Author:

Sapto Nisworo ,Hasibuan Arnawan,Syafii Syafii

Abstract

Accurate scheduling of capacity and operating time for electricity generation is intended to be able to determine the start and end periods of electricity generation operations and produce power output that can meet load requirements. In this research, the goal to be achieved is to know the existence of power plants when to start operating and when to stop operations and to minimize operational costs by dividing the value of the power that will be generated at each power plant. Genetic algorithms are applied to thermal power plant data patterns to design a scheduling plan. The process involves combining the six power generating units to be tested into three different samples. It was found that the total power load and total cost for Sample 1 was 78,109 MW and IDR 200,285, 66.26, Sample 2 was 74,497 MW and IDR 149,774,156.41, and Sample 3 was 78,681 MW and IDR 156,297,893, respectively. 08. This shows that the cost of sample 1 compared to sample 2 decreased by 25.22%, then in sample 2 when compared to sample 3 it increased by 4.17%. The data also shows that a higher number of generations results in lower costs. Therefore, genetic algorithms produce better solutions from one generation to the next.

Publisher

Universitas Andalas

Subject

Marketing,Economics and Econometrics,General Materials Science,General Chemical Engineering

Reference24 articles.

1. C. Wei et al., "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Appl. Energy, vol. 224, pp. 659–670, 2018.

2. S. I. Taheri, M. B. C. Salles, and E. C. M. Costa, "Optimal cost management of distributed generation units and microgrids for virtual power plant scheduling," IEEE Access, vol. 8, pp. 208449–208461, 2020.

3. S. Monice and S. Syafii, “OPERASI EKONOMIS (economic Dispatch) Pembangkit Listrik Tenaga Sampah (PLTSa) dan (PLTG) dalam Melayani Beban Puncak Kelistrikan Sumbar,” Operasi Ekon, vol. 2, 2013.

4. S. Syahrizal, R. H. Siregar, and others, “Analisa Economic Dispatch Pada Unit Pembangkit Menggunakan Metode Iterasi Lambda Berdasarkan Base Point And Participation Factors,” J. Komputer, Inf. Teknol. dan Elektro, vol. 3, no. 2, 2018.

5. S. Sarjiya, M. Isnaeni, and others, “OPTIMASI PENJADWALAN PEMBANGKIT TERMAL DENGAN SISTEM PENYIMPANAN ENERGI MENGGUNAKAN ALGORITMA GENETIKA,” J. Penelit. Tek. Elektro dan Teknol. Inf., vol. 1, no. 1, 2014.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3