Shrimp Pond Monitoring System using Cooperative Wireless Sensor Network Multi-Hop Technique based on Internet of Things

Author:

Zickri Zickri,Novandri Andri,Adriman Ramzi,Nasaruddin

Abstract

Water quality is a crucial factor in maintaining the survival and growth of shrimp. Manual water quality monitoring in shrimp ponds is no longer effective due to the need for periodic monitoring to maintain stable water quality. Therefore, online monitoring using various sensors installed in each pond is necessary. However, there are several challenges to overcome, such as the large expanse of the shrimp ponds, which may lead to data loss due to signal disruptions, and limited energy to power the sensors. To address these issues, this paper proposes the cooperative Wireless Sensor Network (WSN) technique with a multi-hop method for communication in the monitoring process. The system consists of five sensor nodes: temperature sensor, pH sensor, water level sensor, intake water flow sensor, and drain water flow sensor. The cooperative WSN multi-hop technique helps reduce energy consumption in the sensor nodes during measurement and data transmission, while also preventing data packet loss. This is achieved through the use of relay nodes that strengthen signals and forward data to the sink node. As a result, the battery life is extended, and energy usage in the monitoring process can be optimized. The system enables real-time online monitoring and can be accessed through a smartphone application. The results of this study show that the total energy consumption for data transmission in the sensor nodes is 9.64 J, while the total energy consumption for data forwarding in the relay nodes is 9.15 J. The total energy consumption in the transmit and receive processes is 18.79 J or 5.2 mWh. Therefore, it can be concluded that the energy savings of the proposed system is 4.3 mWh or approximately 45%, and is more efficient than the previous system.

Publisher

Universitas Andalas

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3