NEURAL NETWORK MODELING OF RELAY PROTECTION WITH A TIME DELAY

Author:

Ivanov Sergey O.1ORCID,Nikandrov Maxim V.2ORCID,Slavutskii Leonid A.1ORCID

Affiliation:

1. Chuvash State University

2. LLC «iGRIDS» (Cheboksary)

Abstract

Modern electric power facilities – stations and high-voltage substations – have become digital objects with the active use of high-speed local networks directly involved in the technological process. Management, analysis and control of information exchange in the digital substation of the power system require the development of new means and approaches. For these purposes, machine learning methods can be used, in particular the apparatus of artificial neural networks (ANN). The paper shows the possibilities of using direct propagation ANNs (multilayer perceptrons) for modeling and identifying anomalies in the operation modes of relay protection with a time delay. The results of training and testing of the ANN are presented on the example of analyzing the operation of the over current protection in the “sliding time window” mode in a three-phase electrical network. The proposed neuroalgorithm and configuration of the ANN can be used to control the modes and accuracy of relay and cybernetic defenses.

Publisher

I.N. Ulianov Chuvash State University

Subject

General Medicine,General Chemistry

Reference22 articles.

1. Koshcheev M.I., Laryukhin A.A., Slavutskii A.L. Ispol’zovanie adaptivnykh neiroalgoritmov dlya raspoznavaniya anomal’nykh rezhimov sistem vtorichnogo oborudovaniya elektroenergetiki [Application of Adaptive Neuro Algorithms for Recognition of Anomalous Behaviour of Secondary Equipment Systems in Electric Power Industry]. Vestnik Chuvashskogo universiteta, 2019, no. 1, pp. 47–58.

2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika. [Artificial neural networks. Theory and practice]. Moscow, Goryachaya liniya, Telekom, 2001, 382 p.

3. Andreev O.N., Slavutskii L.A., Slavutskiy A.L. Neural network in a “sliding window” for power grids signals structural analysis. In: IOP Conference Series: Earth and Environmental Science: 4, 2022, p. 012054. DOI: 10.1088/1755-1315/990/1/012054.

4. Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.

5. Coury D. V., Oleskovicz M., Aggarwal R.K. An ANN routine for fault detection, classification and location in transmission lines. Electrical Power Components and Systems, 2002, no. 30, pp. 1137–1149.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3