Affiliation:
1. Chuvash State University
2. LLC «iGRIDS» (Cheboksary)
Abstract
Modern electric power facilities – stations and high-voltage substations – have become digital objects with the active use of high-speed local networks directly involved in the technological process. Management, analysis and control of information exchange in the digital substation of the power system require the development of new means and approaches. For these purposes, machine learning methods can be used, in particular the apparatus of artificial neural networks (ANN). The paper shows the possibilities of using direct propagation ANNs (multilayer perceptrons) for modeling and identifying anomalies in the operation modes of relay protection with a time delay. The results of training and testing of the ANN are presented on the example of analyzing the operation of the over current protection in the “sliding time window” mode in a three-phase electrical network. The proposed neuroalgorithm and configuration of the ANN can be used to control the modes and accuracy of relay and cybernetic defenses.
Publisher
I.N. Ulianov Chuvash State University
Subject
General Medicine,General Chemistry
Reference22 articles.
1. Koshcheev M.I., Laryukhin A.A., Slavutskii A.L. Ispol’zovanie adaptivnykh neiroalgoritmov dlya raspoznavaniya anomal’nykh rezhimov sistem vtorichnogo oborudovaniya elektroenergetiki [Application of Adaptive Neuro Algorithms for Recognition of Anomalous Behaviour of Secondary Equipment Systems in Electric Power Industry]. Vestnik Chuvashskogo universiteta, 2019, no. 1, pp. 47–58.
2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika. [Artificial neural networks. Theory and practice]. Moscow, Goryachaya liniya, Telekom, 2001, 382 p.
3. Andreev O.N., Slavutskii L.A., Slavutskiy A.L. Neural network in a “sliding window” for power grids signals structural analysis. In: IOP Conference Series: Earth and Environmental Science: 4, 2022, p. 012054. DOI: 10.1088/1755-1315/990/1/012054.
4. Burton B., Harley R.G. Reducing the computational demands of continually online-trained artificial neural networks for system identification and control of fast processes. IEEE Transactions on Industry Applications, 1998, vol. 34(3), pp. 589–596.
5. Coury D. V., Oleskovicz M., Aggarwal R.K. An ANN routine for fault detection, classification and location in transmission lines. Electrical Power Components and Systems, 2002, no. 30, pp. 1137–1149.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献