RECURRENT NEURAL NETWORK FOR CONTROLLING THE SPECTRUM WIDTH OF A NON-STATIONARY RANDOM SIGNAL

Author:

Alyunov Dmitry Yu.1ORCID

Affiliation:

1. Chuvash State University

Abstract

The purpose of the study is to develop a recurrent neural network for detecting the moment of the beginning of the transient process of a random non-stationary signal in a sliding window. The possibility of using the apparatus of artificial neural networks (ANN) in analyzing non-stationary random processes is investigated. Rapid detection of the moment at which a non-stationary random process changes its behavior is an urgent task of electrical engineering. Materials and methods. A comparison is made between the use of the autocorrelation function and a neural network algorithm based on a recurrent neural network to control non-stationary noise. Results. The novelty of the study consists in developing a new algorithm for estimating the spectrum width of a non-stationary random signal based on the use of the ANN apparatus. It is shown that recurrent neural networks are capable of processing the original signal. They do not require special pre-processing and data preparation. A study of the quality of ANN operation depending on the parameters of the signals and the size of the sliding window was carried out. The ways to improve the architecture of the neural network and to enrich the data to improve the quality of the classifier are proposed. Conclusions. It was found that there is an optimal ratio between the time of detecting a change in signal parameters and the size of the sliding window, which imposes restrictions on the choice of the latter and the method of applying the trained neural network model.

Publisher

I.N. Ulianov Chuvash State University

Subject

General Medicine,General Chemistry

Reference20 articles.

1. Averkin A.N., Yarushev S.A. Sravnitel’nyi analiz metodov prognozirovaniya vremennykh ryadov na osnove neironnykh setei i regressionnogo analiza [Comparative analysis of time series forecasting methods based on neural networks and regression analysis]. Sistemnyi analiz v nauke i obrazovanii, 2015, no. 2, pp. 34–49.

2. Andreev O.N., Vasil’eva L.N. Neirosetevaya obrabotka signalov s nelineinymi iskazheniyami v «skol’zyashchem vremennom okne» [Neural Network Processing of Signals with Nonlinear Distortions in a “Sliding Time Window”]. Vestnik Chuvashskogo universiteta, 2022, no. 1. pp. 5–

3. Gazizov D.I. Obzor metodov statisticheskogo analiza vremennykh ryadov i problemy, voznikayushchie pri analize nestatsionarnykh vremennykh ryadov [Overview of methods for statistical analysis of time series and problems arising in the analysis of non-stationary time series]. Nauchnyi zhurnalб 2016, no. 3(4), pp. 9–

4. Getmanov V.G. Tekhnologiya spektral’no-vremennogo analiza nestatsionarnykh kolebatel’nykh signalov mekhanicheskikh sistem [Technology of spectral-temporal analysis of non-stationary oscillatory signals of mechanical systems]. Problemy mashinostroeniya i avtomatizatsii, 2010, no. 2, pp. 121–129.

5. Golovko V.A., Khatskevich M.V., Brich A.L. Metod prognozirovaniya vremennykh ryadov na osnove mnogosloinogo perseptrona [Time series forecasting method based on multilayer perceptron]. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. Fizika, matematika, informatika, 2013, vol. 5(83), pp. 2–6.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3