ACCURACY ESTIMATION FOR OPERATING CHARACTERISTICS NEUROMODELING OF THE OVERCURRENT PROTECTION IN A THREE PHASE MAINS

Author:

Ivanov Sergey O.1,Lariukhin Aleksandr A.2,Nikandrov Maxim V.2,Slavutskii Leonid A.1ORCID

Affiliation:

1. Chuvash State University

2. LLC «iGRIDS» ltd.

Abstract

Modern electric power facilities-stations and high-voltage substations have become digital objects with the active use of high-speed local networks directly involved in the technological process. Management, analysis and control of information exchange in the digital substation of the power system require the development of new tools and approaches. For these purposes, machine learning methods can be used, in particular, the artificial neural networks. The paper presents the results of neural network modeling of the operation of the overcurrent protection – as a variant of the information exchange analysis. An elementary perceptron is used as a neural network with the simplest structure. The optimized structure of the neural network and estimates of the accuracy of the neural network algorithm are given, depending on the size of the training sample (from 1000 to 50000 records), the number of training epochs. It is shown that the analysis of the neural network algorithm errors encountered during testing of the neural network enables to estimate the threshold (the setting value) current protection depending on the size of the training sample. It is found that the recognition of the protection trigger threshold in neural network modeling is violated only when the all three phase currents in electrical mains are close to the threshold. The possibilities of improving the proposed approach and its use for detecting anomalies in the information exchange and operation of secondary equipment of digital substations of the power system are discussed.

Publisher

I.N. Ulianov Chuvash State University

Reference27 articles.

1. Koshcheev M.I., Slavutskiy A.L., Slavutskii L.A. Prostyye neyrosetevyye algoritmy dlya volnovogo metoda opredeleniya mesta povrezhdeniya elektroseti [Simple neural network algorithms for the wave method of fault location in power networks]. Vestnik Chuvashskogo universiteta, 2019, no. 3, pp. 110–118.

2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Neural networks. Theory and practice]. Moscow, Goryachaya liniya Telekom Publ., 2001, 382 p.

3. Lachugin V.F., Panfilov D.I., Smirnov A.N. Realizatsiya volnovogo metoda opredeleniya mesta povrezhdeniya na liniyakh elektroperedachi s ispol’zovaniem statisticheskikh metodov analiza dannykh [Implementation of the wave method of determining the location of damage on power lines using statistical data analysis methods]. Izvestiya RAN. Energetik, 2013, no. 6, pp. 137-146.

4. Lyamets Yu.Ya., Nudel’man G.S., Pavlov A.O., Efimov E.B., Zakon’shek Ya. Raspoznavaemost’ povrezhdenii elektroperedachi, ch. 1,2,3 [Detectability of power transmission damage]. Elektrichestvo, 2001, no. 2, pp. 16–23; no. 3, pp. 16–24; no. 12, pp. 9–22.

5. Slavutskii A.L, Pryanikov V.S., Slavutskii L.A. Modelirovanie perekhodnykh rezhimov uzla nagruzki s trekhobmotochnym transformatorom na raznykh urovnyakh napryazheniya [Simulation of transient modes of a load node with a three-winding transformer at different voltage levels]. Elektrotekhnika, 2017, no. 7, pp. 20–24.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3