CHOOSING A NEURAL NETWORK STRUCTURE FOR SIGNAL PROCESSING AS AN EXPERIMENT PLANNING

Author:

Slavutskii Leonid A.1ORCID,Slavutskaya Elena V.2ORCID

Affiliation:

1. Chuvash State University

2. I.Ya. Yakovlev Chuvash State Pedagogical University

Abstract

The paper is devoted to the use of artificial neural networks for signal processing in electrical engineering and electric power industry. Direct propagation neural network (perceptron) is considered as an object in the theory of experiment planning. The variants of the neural network structure empirical choice, the quality criteria of its training and testing are analyzed. It is shown that the perceptron structure choice, the training sample, and the training algorithms require planning. Variables and parameters of neuro algorithm that can act as factors, state parameters, and disturbing influences in the framework of the experimental planning theory are discussed. The proposed approach is demonstrated by the example of neural network analysis of the industrial frequency signal of 50 Hz nonlinear distortions. The possibility of using an elementary perceptron with one hidden layer and a minimum number of neurons to correct the transformer saturation current is analyzed. The conditions under which the neuro algorithm allows one to restore the values of the main harmonic amplitude, frequency and phase with an error of no more than one percent are revealed. The signal processing in a «sliding window» with a duration of a fraction of the fundamental frequency period is proposed, and the neuro algorithm accuracy characteristics are estimated. The possibility to automate the neural network structure choosing for signal processing is discussed.

Publisher

I.N. Ulianov Chuvash State University

Reference30 articles.

1. Korol E.G. Analiz metodov modelirovaniya magnitnykh kharakteristik elektromagnitov dlya kompensatsii magnitnogo polya elektrooborudovaniya [Analysis of methods for modeling the magnetic characteristics of electromagnets for compensating the magnetic field of electrical equipment]. Elektrotekhnika i Elektromekhanika, 2007, no. 2, pp. 31–34.

2. Kruglov V.V., Borisov V.V. Iskusstvennye neironnye seti. Teoriya i praktika [Neural networks. Theory and practice] Moscow, Goryachaya liniya Telekom Publ., 2001, 382 p.

3. Kuzhekov S.L., Nudel’man G.S. Obespecheniye pravil’noy raboty mikroprotsessornykh ustroystv differentsial’noy zashchity pri nasyshchenii transformatorov toka [Ensuring the correct operation of microprocessor devices of differential protection during saturation of current transformers]. Elektromekhanika, 2009, no. 4, pp. 12–17.

4. Lyamets Yu.Ya., Nudel’man G.S., Pavlov A.O., Efimov E.B., Zakon’shek Ya. Raspoznavaemost’ povrezhdenii elektroperedachi, ch. 1,2,3 [Detectability of power transmission damage]. Elektrichestvo, 2001, no. 2, pp. 16–23; no. 3, pp. 16–24; no. 12, pp. 9–22.

5. Slavutskaya E., Slavutskiy L. On choosing the artificial neural networks structure and the algorithms for psycho diagnostic data analyzing [O vybore struktury iskusstvennykh neyrosetey i algoritmov analiza psikhodiagnosticheskikh dannykh]. Kazan pedagogical journal, 2020, no. 5(142), рp. 202–210. DOI:34772/KPJ.2020.142.5.026.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3