NEURAL NET USING TO DETERMINE DEPTH AND FREQUENCY OF SIGNALS’ MODULATION FOR ELECTRICAL EQUIPMENT ULTRASONIC VIBROCONTROL

Author:

Bychkov Anatoly V.1ORCID,Bychkova Irina Yu.1ORCID,Suslova Nadezhda N.1,Alimov Kurbangali K.1

Affiliation:

1. Chuvash State University

Abstract

The apparatus of artificial neural networks (ANN) is proposed to be used for signal processing in active ultrasonic (US) vibration control of electrical equipment. A feature of the applied neural network algorithm is that the required information about vibration parameters is embedded in the ultrasound signal’s phase change at its constant amplitude. Under these conditions, traditional spectral analysis of signals requires a high sampling rate and a significant recording duration. When using the direct propagation’s ANN with three hidden layers, it was shown that it is sufficient to use a sampling frequency of 5-6 points for the period of an ultrasonic wave and a recording duration of 4-5 periods to estimate the nonstationary frequency and amplitude of the vibration signal. Estimates of the error in determining the amplitude, frequency and phase of vibrations are obtained. The root-mean-square errors of the neural network algorithm do not exceed units of percent. The possibilities of using a trained neural network for signal processing in a «sliding window» are demonstrated. The accuracy characteristics of the proposed neural network algorithm of signal processing and the possibility of its optimization for electrical equipment’s vibration control are discussed.

Publisher

I.N. Ulianov Chuvash State University

Reference23 articles.

1. Bychkov A.V., Slavutskii L.A. Vozmozhnosti korrelyatsionnoi obrabotki impul’snykh ul’trazvukovykh signalov pri beskontaktnom vibrokontrole oborudovaniya ehlektroehnergetiki [Capabilities of correlation processing of pulse ultrasonic signals for noncontact vibration control of electric power industry equipment]. Vestnik Chuvashskogo universiteta, 2018, no. 3, pp. 24–32.

2. Dyuk V., Samoilenko A. Data Mining [Data mining]. St. Petersburg, Piter Publ., 2001, 386 p.

3. Kostyukova N.I. Sistema prinyatiya reshenii v oblasti meditsinskoi diagnostiki i vybora optimal’nykh reshenii po tekhnologii Data Mining [Decision-making system in the field of medical diagnostics and selection of optimal solutions using Data Mining technology]. Otkrytoe obrazovanie, 2010, App., pp. 145–146.

4. Rusov V.A. Diagnostika defektov vrashchayushchegosya oborudovaniya po vibratsionnym signalam [Diagnosis of defects in rotating equipment by vibration signals]. Perm, DimRus Publ., 2012, 200 p.

5. Slavutskii L.A., Kostyukov A.S. Statisticheskaya pogreshnost’ ul’trazvukovogo tsifrovogo urovnemera s chastotno-fazovoi modulyatsiei signala [Statistical error of an ultrasonic digital level meter with frequency-phase modulation of the signal]. Pribory i sistemy. Upravlenie, kontrol’, diagnostika, 2009, no. 8, pp. 35–37.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3