Examining the use of decision trees in population health surveillance research: an application to youth mental health survey data in the COMPASS study

Author:

Battista Katelyn1,Diao Liqun2,Patte Karen A.3,Dubin Joel A.12,Leatherdale Scott T.1

Affiliation:

1. School of Public Health Sciences, University of Waterloo, Waterloo, Ontario, Canada

2. Department of Statistics and Actuarial Science, University of Waterloo, Waterloo, Ontario, Canada

3. Department of Health Sciences, Brock University, St. Catharines, Ontario, Canada

Abstract

Introduction

In population health surveillance research, survey data are commonly analyzed using regression methods; however, these methods have limited ability to examine complex relationships. In contrast, decision tree models are ideally suited for segmenting populations and examining complex interactions among factors, and their use within health research is growing. This article provides a methodological overview of decision trees and their application to youth mental health survey data.

Methods

The performance of two popular decision tree techniques, the classification and regression tree (CART) and conditional inference tree (CTREE) techniques, is compared to traditional linear and logistic regression models through an application to youth mental health outcomes in the COMPASS study. Data were collected from 74 501 students across 136 schools in Canada. Anxiety, depression and psychosocial well-being outcomes were measured along with 23 sociodemographic and health behaviour predictors. Model performance was assessed using measures of prediction accuracy, parsimony and relative variable importance.

Results

Decision tree and regression models consistently identified the same sets of most important predictors for each outcome, indicating a general level of agreement between methods. Tree models had lower prediction accuracy but were more parsimonious and placed greater relative importance on key differentiating factors.

Conclusion

Decision trees provide a means of identifying high-risk subgroups to whom prevention and intervention efforts can be targeted, making them a useful tool to address research questions that cannot be answered by traditional regression methods.

Publisher

Health Promotion and Chronic Disease Prevention Branch (HPCDP) Public Health Agency of Canada

Subject

Public Health, Environmental and Occupational Health,Health Policy,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3