Author:
Duan Xudong,Zhao Yiwei,Zhang Jiewen,Kong Ning,Cao Ruomu,Guan Huanshuai,Li Yiyang,Wang Kunzheng,Yang Pei,Tian Run
Abstract
Background:
Robotic-assisted total knee arthroplasty (RA-TKA) is becoming more and more popular as a treatment option for advanced knee diseases due to its potential to reduce operator-induced errors. However, the development of accurate prediction models for postoperative outcomes is challenging. This study aimed to develop a nomogram model to predict the likelihood of achieving a beneficial functional outcome. The beneficial outcome is defined as a postoperative improvement of the functional Knee Society Score (fKSS) of more than 10 points, 3 months after RA-TKA by early collection and analysis of possible predictors.
Methods:
This is a retrospective study on 171 patients who underwent unilateral RA-TKA at our hospital. The collected data included demographic information, preoperative imaging data, surgical data, and preoperative and postoperative scale scores. Participants were randomly divided into a training set (N=120) and a test set (N=51). Univariate and multivariate logistic regression analyses were employed to screen for relevant factors. Variance inflation factor was used to investigate for variable collinearity. The accuracy and stability of the models were evaluated using calibration curves with the Hosmer–Lemeshow goodness-of-fit test, consistency index and receiver operating characteristic curves.
Results:
Predictors of the nomogram included preoperative hip-knee-ankle angle deviation, preoperative 10-cm Visual Analogue Scale score, preoperative fKSS score and preoperative range of motion. Collinearity analysis with demonstrated no collinearity among the variables. The consistency index values for the training and test sets were 0.908 and 0.902, respectively. Finally, the area under the receiver operating characteristic curve was 0.908 (95% CI 0.846–0.971) in the training set and 0.902 (95% CI 0.806–0.998) in the test set.
Conclusion:
A nomogram model was designed hereby aiming to predict the functional outcome 3 months after RA-TKA in patients. Rigorous validation showed that the model is robust and reliable. The identified key predictors include preoperative hip-knee-ankle angle deviation, preoperative visual analogue scale score, preoperative fKSS score, and preoperative range of motion. These findings have major implications for improving therapeutic interventions and informing clinical decision-making in patients undergoing RA-TKA.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献