The Small Pixel Effect in Ultra-High-Resolution Photon-Counting CT of the Lumbar Spine

Author:

Huflage Henner,Hendel Robin,Woznicki Piotr,Conrads Nora,Feldle Philipp,Patzer Theresa Sophie,Ergün Süleyman,Bley Thorsten Alexander,Kunz Andreas Steven,Grunz Jan-Peter

Abstract

Objectives Image acquisition in ultra-high-resolution (UHR) scan mode does not impose a dose penalty in photon-counting CT (PCCT). This study aims to investigate the dose saving potential of using UHR instead of standard-resolution PCCT for lumbar spine imaging. Materials and Methods Eight cadaveric specimens were examined with 7 dose levels (5–35 mGy) each in UHR (120 × 0.2 mm) and standard-resolution acquisition mode (144 × 0.4 mm) on a first-generation PCCT scanner. The UHR images were reconstructed with 3 dedicated bone kernels (Br68 [spatial frequency at 10% of the modulation transfer function 14.5 line pairs/cm], Br76 [21.0], and Br84 [27.9]), standard-resolution images with Br68 and Br76. Using automatic segmentation, contrast-to-noise ratios (CNRs) were established for lumbar vertebrae and psoas muscle tissue. In addition, image quality was assessed subjectively by 19 independent readers (15 radiologists, 4 surgeons) using a browser-based forced choice comparison tool totaling 16,974 performed pairwise tests. Pearson's correlation coefficient (r) was used to analyze the relationship between CNR and subjective image quality rankings, and Kendall W was calculated to assess interrater agreement. Results Irrespective of radiation exposure level, CNR was higher in UHR datasets than in standard-resolution images postprocessed with the same reconstruction parameters. The use of sharper convolution kernels entailed lower CNR but higher subjective image quality depending on radiation dose. Subjective assessment revealed high interrater agreement (W = 0.86; P < 0.001) with UHR images being preferred by readers in the majority of comparisons on each dose level. Substantial correlation was ascertained between CNR and the subjective image quality ranking (all r's ≥ 0.95; P < 0.001) Conclusions In PCCT of the lumbar spine, UHR mode's smaller pixel size facilitates a considerable CNR increase over standard-resolution imaging, which can either be used for dose reduction or higher spatial resolution depending on the selected convolution kernel.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3