Affiliation:
1. Department of Radiology, NYU Grossman School of Medicine, New York, NY
2. Siemens Medical Solutions USA, Princeton, NJ
3. Siemens Healthcare GmbH, Erlangen, Germany
4. Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
5. Imaging Institute, Cleveland Clinic, Cleveland, OH
Abstract
Background
Detection of rotator cuff tears, a common cause of shoulder disability, can be time-consuming and subject to reader variability. Deep learning (DL) has the potential to increase radiologist accuracy and consistency.
Purpose
The aim of this study was to develop a prototype DL model for detection and classification of rotator cuff tears on shoulder magnetic resonance imaging into no tear, partial-thickness tear, or full-thickness tear.
Materials and Methods
This Health Insurance Portability and Accountability Act-compliant, institutional review board–approved study included a total of 11,925 noncontrast shoulder magnetic resonance imaging scans from 2 institutions, with 11,405 for development and 520 dedicated for final testing. A DL ensemble algorithm was developed that used 4 series as input from each examination: fluid-sensitive sequences in 3 planes and a sagittal oblique T1-weighted sequence. Radiology reports served as ground truth for training with categories of no tear, partial tear, or full-thickness tear. A multireader study was conducted for the test set ground truth, which was determined by the majority vote of 3 readers per case. The ensemble comprised 4 parallel 3D ResNet50 convolutional neural network architectures trained via transfer learning and then adapted to the targeted domain. The final tear-type prediction was determined as the class with the highest probability, after averaging the class probabilities of the 4 individual models.
Results
The AUC overall for supraspinatus, infraspinatus, and subscapularis tendon tears was 0.93, 0.89, and 0.90, respectively. The model performed best for full-thickness supraspinatus, infraspinatus, and subscapularis tears with AUCs of 0.98, 0.99, and 0.95, respectively. Multisequence input demonstrated higher AUCs than single-sequence input for infraspinatus and subscapularis tendon tears, whereas coronal oblique fluid-sensitive and multisequence input showed similar AUCs for supraspinatus tendon tears. Model accuracy for tear types and overall accuracy were similar to that of the clinical readers.
Conclusions
Deep learning diagnosis of rotator cuff tears is feasible with excellent diagnostic performance, particularly for full-thickness tears, with model accuracy similar to subspecialty-trained musculoskeletal radiologists.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Radiology, Nuclear Medicine and imaging,General Medicine
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献