Toward Precision Diagnosis

Author:

O'Shaughnessy Emma,Senicourt Lucile,Mambour Natasha,Savatovsky Julien,Duron Loïc,Lecler Augustin

Abstract

Background Orbital tumors present a diagnostic challenge due to their varied locations and histopathological differences. Although recent advancements in imaging have improved diagnosis, classification remains a challenge. The integration of artificial intelligence in radiology and ophthalmology has demonstrated promising outcomes. Purpose This study aimed to evaluate the performance of machine learning models in accurately distinguishing malignant orbital tumors from benign ones using multiparametric 3 T magnetic resonance imaging (MRI) data. Materials and Methods In this single-center prospective study, patients with orbital masses underwent presurgery 3 T MRI scans between December 2015 and May 2021. The MRI protocol comprised multiparametric imaging including dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), intravoxel incoherent motion (IVIM), as well as morphological imaging acquisitions. A repeated nested cross-validation strategy using random forest classifiers was used for model training and evaluation, considering 8 combinations of explanatory features. Shapley additive explanations (SHAP) values were used to assess feature contributions, and the model performance was evaluated using multiple metrics. Results One hundred thirteen patients were analyzed (57/113 [50.4%] were women; average age was 51.5 ± 17.5 years, range: 19–88 years). Among the 8 combinations of explanatory features assessed, the performance on predicting malignancy when using the most comprehensive model, which is the most exhaustive one incorporating all 46 explanatory features—including morphology, DWI, DCE, and IVIM, achieved an area under the curve of 0.9 [0.73–0.99]. When using the streamlined “10-feature signature” model, performance reached an area under the curve of 0.88 [0.71–0.99]. Random forest feature importance graphs measured by the mean of SHAP values pinpointed the 10 most impactful features, which comprised 3 quantitative IVIM features, 4 quantitative DCE features, 1 quantitative DWI feature, 1 qualitative DWI feature, and age. Conclusions Our findings demonstrate that a machine learning approach, integrating multiparametric MRI data such as DCE, DWI, IVIM, and morphological imaging, offers high-performing models for differentiating malignant from benign orbital tumors. The streamlined 10-feature signature, with a performance close to the comprehensive model, may be more suitable for clinical application.

Publisher

Ovid Technologies (Wolters Kluwer Health)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3