Photon Counting Detector CT-Based Virtual Noniodine Reconstruction Algorithm for In Vitro and In Vivo Coronary Artery Calcium Scoring: Impact of Virtual Monoenergetic and Quantum Iterative Reconstructions

Author:

Fink Nicola,Zsarnoczay Emese,Schoepf U. Joseph1,Griffith Joseph P.1,Wolf Elias V.,O'Doherty Jim,Suranyi Pal1,Baruah Dhiraj1,Kabakus Ismail M.1,Ricke Jens2,Varga-Szemes Akos1,Emrich Tilman

Affiliation:

1. Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Charleston

2. Department of Radiology, University Hospital, LMU Munich, Munich, Germany

Abstract

Objectives The aim of this study was to evaluate the impact of virtual monoenergetic imaging (VMI) and quantum iterative reconstruction (QIR) on the accuracy of coronary artery calcium scoring (CACS) using a virtual noniodine (VNI) reconstruction algorithm on a first-generation, clinical, photon counting detector computed tomography system. Materials and Methods Coronary artery calcium scoring was evaluated in an anthropomorphic chest phantom simulating 3 different patient sizes by using 2 extension rings (small: 300 × 200 mm, medium: 350 × 250 mm, large: 400 × 300 mm) and in patients (n = 61; final analyses only in patients with coronary calcifications [n = 34; 65.4 ± 10.0 years; 73.5% male]), who underwent nonenhanced and contrast-enhanced, electrocardiogram-gated, cardiac computed tomography on a photon counting detector system. Phantom and patient data were reconstructed using a VNI reconstruction algorithm at different VMI (55–80 keV) and QIR (strength 1–4) levels (CACSVNI). True noncontrast (TNC) scans at 70 keV and QIR “off” were used as reference for phantom and patient studies (CACSTNC). Results In vitro and in vivo CACSVNI showed strong correlation (r > 0.9, P < 0.001 for all) and excellent agreement (intraclass correlation coefficient > 0.9 for all) with CACSTNC at all investigated VMI and QIR levels. Phantom and patient CACSVNI significantly increased with decreasing keV levels (in vitro: from 475.2 ± 26.3 at 80 keV up to 652.5 ± 42.2 at 55 keV; in vivo: from 142.5 [7.4/737.7] at 80 keV up to 248.1 [31.2/1144] at 55 keV; P < 0.001 for all), resulting in an overestimation of CACSVNI at 55 keV compared with CACSTNC at 70 keV in some cases (in vitro: 625.8 ± 24.4; in vivo: 225.4 [35.1/959.7]). In vitro CACS increased with rising QIR at low keV. In vivo scores were significantly higher at QIR 1 compared with QIR 4 only at 60 and 80 keV (60 keV: 220.3 [29.6–1060] vs 219.5 [23.7/1048]; 80 keV: 152.0 [12.0/735.6] vs 142.5 [7.4/737.7]; P < 0.001). CACSVNI was closest to CACSTNC at 60 keV, QIR 2 (+0.1%) in the small; 55 keV, QIR 1 (±0%) in the medium; 55 keV, QIR 4 (−0.1%) in the large phantom; and at 60 keV, QIR 1 (−2.3%) in patients. Conclusions Virtual monoenergetic imaging reconstructions have a significant impact on CACSVNI. The effects of different QIR levels are less consistent and seem to depend on several individual conditions, which should be further investigated.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3