Abstract
Objectives
To investigate the signal-enhancement properties of the tetrameric gadolinium-based contrast agent (GBCA) gadoquatrane in relation to the administered dose and compare its properties to those of a standard dose of gadobutrol, as a representative of the currently established macrocyclic GBCAs for magnetic resonance imaging.
Materials and Methods
In this randomized, single-blind, 4 × 4 crossover study, 43 healthy adults (19–50 years of age) received 3 single IV injections of gadoquatrane (0.01, 0.03, and 0.06 mmol gadolinium/kg body weight) and 1 injection of gadobutrol (0.1 mmol gadolinium/kg body weight) in randomized sequence with 1-week washout periods between administrations. The relative signal enhancement (RSE) was determined in predefined areas of interest in magnetic resonance image sets of the head-neck region. RSE-vs-dose curves (dose-response curves) were established by linear regression, and comparator-equivalent doses were determined by Bayesian inverse regression analysis. Further, 3 blood samples were taken after each injection for pharmacokinetic analyses, and safety data were assessed.
Results
The RSE increased with gadoquatrane dose. A linear function adequately fitted this relationship. In line with the more than 2-fold higher r1 relaxivity of gadoquatrane per gadolinium ion, gadobutrol-equivalent RSE was achieved with gadoquatrane at less than half the gadolinium dose and less than one eighth of the molecule dose.
Administration of gadoquatrane and gadobutrol resulted in very similar dose-normalized gadolinium concentrations in plasma, indicating that the pharmacokinetic profiles are essentially the same. Both contrast agents were well tolerated. Adverse events were rare and not dependent on the dose administered.
Conclusions
Gadoquatrane has the potential to be an effective GBCA that can be used at substantially lower doses in clinical routine than the currently established macrocyclic GBCAs.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Reference13 articles.
1. Preclinical profile of gadoquatrane: a novel tetrameric, macrocyclic high relaxivity gadolinium-based contrast agent;Invest Radiol,2022
2. Physicochemical and pharmacokinetic profiles of gadopiclenol: a new macrocyclic gadolinium chelate with high T1 relaxivity;Invest Radiol,2019
3. Pharmacokinetics, safety, and tolerability of the novel tetrameric, high-relaxivity, macrocyclic gadolinium-based contrast agent gadoquatrane in healthy adults;Invest Radiol,2024
4. Pharmacokinetics, safety, and tolerability of the novel tetrameric gadolinium-based MRI contrast agent gadoquatrane in healthy Chinese and Japanese men: two randomized dose-escalation studies including concentration-QTc modeling;Eur J Pharm Sci,2024
5. Advocating the development of next-generation high-relaxivity gadolinium chelates for clinical magnetic resonance;Invest Radiol,2018