Deep Learning–Accelerated Liver Diffusion-Weighted Imaging

Author:

Kim Dong Hwan,Kim Bohyun,Lee Hyun-Soo,Benkert Thomas,Kim Hokun,Choi Joon-Il,Oh Soon Nam,Rha Sung Eun

Abstract

Objectives Deep learning–reconstructed diffusion-weighted imaging (DL-DWI) is an emerging promising time-efficient method for liver evaluation, but analyses regarding different motion compensation strategies are lacking. This study evaluated the qualitative and quantitative features, sensitivity for focal lesion detection, and scan time of free-breathing (FB) DL-DWI and respiratory-triggered (RT) DL-DWI compared with RT conventional DWI (C-DWI) in the liver and a phantom. Materials and Methods Eighty-six patients indicated for liver MRI underwent RT C-DWI, FB DL-DWI, and RT DL-DWI with matching imaging parameters other than the parallel imaging factor and number of averages. Two abdominal radiologists independently assessed qualitative features (structural sharpness, image noise, artifacts, and overall image quality) using a 5-point scale. The signal-to-noise ratio (SNR) along with the apparent diffusion coefficient (ADC) value and its standard deviation (SD) were measured in the liver parenchyma and a dedicated diffusion phantom. For focal lesions, per-lesion sensitivity, conspicuity score, SNR, and ADC value were evaluated. Wilcoxon signed rank test and repeated-measures analysis of variance with post hoc test revealed the difference in DWI sequences. Results Compared with RT C-DWI, the scan times for FB DL-DWI and RT DL-DWI were reduced by 61.5% and 23.9%, respectively, with statistically significant differences between all 3 pairs (all P's < 0.001). Respiratory-triggered DL-DWI showed a significantly sharper liver margin, less image noise, and more minor cardiac motion artifact compared with RT C-DWI (all P's < 0.001), whereas FB DL-DWI showed more blurred liver margins and poorer intrahepatic vessels demarcation than RT C-DWI. Both FB- and RT DL-DWI showed significantly higher SNRs than RT C-DWI in all liver segments (all P's < 0.001). There was no significant difference in overall ADC values across DWI sequences in the patient or phantom, with the highest value recorded in the left liver dome by RT C-DWI. The overall SD was significantly lower with FB DL-DWI and RT DL-DWI than RT C-DWI (all P's ≤ 0.003). Respiratory-triggered DL-DWI showed a similar per-lesion sensitivity (0.96; 95% confidence interval, 0.90–0.99) and conspicuity score to those of RT C-DWI and significantly higher SNR and contrast-to-noise ratio values (P ≤ 0.006). The per-lesion sensitivity of FB DL-DWI (0.91; 95% confidence interval, 0.85–0.95) was significantly lower than that of RT C-DWI (P = 0.001), with a significantly lower conspicuity score. Conclusions Compared with RT C-DWI, RT DL-DWI demonstrated superior SNR, comparable sensitivity for focal hepatic lesions, and reduced acquisition time, making it a suitable alternative to RT C-DWI. Despite FB DL-DWI's weakness in motion-related challenges, further refinement could potentiate FB DL-DWI in the context of abbreviated screening protocols, where time efficiency is a high priority.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Radiology, Nuclear Medicine and imaging,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3