Quantifying Tendon Degeneration Using Magic Angle Insensitive Ultra-Short Echo Time Magnetization Transfer

Author:

Feuerriegel Georg C.,Marth Adrian A.,Goller Sophia S.,Hilbe Monika,Sommer Stefan,Sutter Reto

Abstract

Objectives The aim of this study was to qualitatively and quantitatively assess changes in bovine flexor tendons before and after collagen degradation and at different angles in relation to the static B0 field using 3-dimensional ultra-short echo time (UTE) magnetization transfer (MT) imaging within a clinically feasible acquisition time. Materials and Methods Eight bovine flexor tendons were examined at 3 T magnetic resonance imaging including 3-dimensional UTE MT and UTE T2* research application sequences (acquired within 4:04 and 6:38 minutes, respectively) before and after enzyme-induced degradation. The tendons were divided into 2 groups: group 1 (controls) treated with phosphate-buffered saline and group 2 treated with collagenase I to induce collagen degeneration. Magnetic resonance imaging was repeated at 0, 27, 55, and 90 degrees to the B0 field. To calculate quantitative tissue properties, all tendons were semiautomatically segmented, and changes in quantitative UTE T2* and UTE MT ratios (MTRs) were compared at different angles and between groups. In addition to descriptive statistics, the coefficient of variation was calculated to compare UTE MT and UTE T2* imaging. Results Ultra-short echo time MTR showed a significantly lower coefficient of variation compared with UTE T2* values, indicating a more robust imaging method (UTE MTR 9.64%–11.25%, UTE T2* 18.81%–24.06%, P < 0.001). Both methods showed good performance in detecting degenerated tendons using histopathology as reference standard, with UTE MT imaging having a better area under the curve than UTE T2* mapping (0.918 vs 0.865). Falsely high UTE T2* values were detected at the 55 degrees acquisition angle, whereas UTE MTR values were robust, that is, insensitive to the MAE. Conclusions Ultra-short echo time MT imaging is a reliable method for quantifying tendon degeneration that is robust to the MAE and can be acquired in a clinically reasonable time.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3