Activation of Canonical Notch Signaling Pathway Is Involved in the Ischemic Tolerance Induced by Sevoflurane Preconditioning in Mice

Author:

Yang Qianzi1,Yan Wenjun1,Li Xin1,Hou Lihong2,Dong Hui2,Wang Qiang2,Dong Hailong3,Wang Shiquan4,Zhang Xia5,Xiong Lize6

Affiliation:

1. Ph.D. Candidate.

2. Associate Professor.

3. Associate Professor and Chief.

4. Research Assistant.

5. Professor, Institute of Mental Health Research, Department of Psychiatry and Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada

6. Professor, Department of Anesthesiology, Xijing Hospital, Fourth Military Medical University, Xi’an, China.

Abstract

Background A wealth of evidence has demonstrated that sevoflurane preconditioning induces brain ischemic tolerance, but the mechanism remains poorly understood. This study was designed to investigate the role of canonical Notch signaling in the neuroprotection induced by sevoflurane preconditioning in a mouse model. Methods C57BL/6 mice were pretreated with 1-h sevoflurane exposure at a dose of 2.5% for 5 consecutive days. Twenty-four hours after the last exposure, all mice were subjected to focal cerebral ischemia by right middle cerebral artery occlusion for 60 min. Neurobehavioral scores, brain infarct volumes, and cellular apoptosis were determined at 72 h after reperfusion (n = 10 per group). The activation of Notch signaling was evaluated (n = 5 per group), and its role in ischemic tolerance was assessed by intraperitoneal administration of γ-secretase inhibitor DAPT (100 mg/kg, n = 10 per group) and conditional Notch-RBP-J knockout technique (n = 8 per group). Results Sevoflurane preconditioning reduced brain infarct volumes (42.5%), improved neurologic outcomes (P < 0.01 vs. control), and attenuated neuronal cell apoptosis (cells positive for terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick-end labeling reduced to 21.2%). The expression of Notch1 intracellular domain (1.35 folds) and the transcriptions of Hes1 (1.95 times) and Hes5 (1.48 times) were up-regulated. DAPT augmented the brain infarcts (1.64-fold) and decreased neurologic scores (P = 0.43 vs. sevoflurane) in sevoflurane-preconditioned mice. Brain infarct volumes, neurobehavioral scores, and apoptotic cell numbers showed no significance between Notch knockout mice with sevoflurane preconditioning and wild-type mice without preconditioning. Conclusions Sevoflurane preconditioning-induced protective effects against transient cerebral ischemic injuries are mediated by the activation of canonical Notch signaling pathway in mice.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3