Ketamine-induced Neuroapoptosis in the Fetal and Neonatal Rhesus Macaque Brain

Author:

Brambrink Ansgar M.1,Evers Alex S.2,Avidan Michael S.3,Farber Nuri B.4,Smith Derek J.5,Martin Lauren D.6,Dissen Gregory A.7,Creeley Catherine E.8,Olney John W.4

Affiliation:

1. Professor, Department of Anesthesiology & Perioperative Medicine, Oregon Health & Science University, Portland, Oregon.

2. Professor and Chairman.

3. Professor, Department of Anesthesiology.

4. Professor.

5. Research Associate.

6. Staff Veterinarian, Division of Surgery.

7. Staff Scientist, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon.

8. Instructor, Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri.

Abstract

Background Exposure of rhesus macaque fetuses for 24 h or neonates for 9 h to ketamine anesthesia causes neuroapoptosis in the developing brain. The current study clarifies the minimum exposure required for and the extent and spatial distribution of ketamine-induced neuroapoptosis in rhesus fetuses and neonates. Method Ketamine was administered by IV infusion for 5 h to postnatal day 6 rhesus neonates or to pregnant rhesus females at 120 days' gestation (full term = 165 days). Three hours later, fetuses were delivered by cesarean section, and the fetal and neonatal brains were studied for evidence of apoptotic neurodegeneration, as determined by activated caspase-3 staining. Results Both the fetal (n = 3) and neonatal (n = 4) ketamine-exposed brains had a significant increase in apoptotic profiles compared with drug-naive controls (fetal n = 4; neonatal n = 5). Loss of neurons attributable to ketamine exposure was 2.2 times greater in fetuses than in neonates. The pattern of neurodegeneration in fetuses was different from that in neonates, and all subjects exposed at either age had a pattern characteristic for that age. Conclusion The developing rhesus macaque brain is sensitive to the apoptogenic action of ketamine at both a fetal and neonatal age, and exposure duration of 5 h is sufficient to induce a significant neuroapoptosis response at either age. The pattern of neurodegeneration induced by ketamine in fetuses was different from that in neonates, and loss of neurons attributable to ketamine exposure was 2.2 times greater in the fetal than neonatal brains.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3