Comparison of Equivolume, Equiosmolar Solutions of Mannitol and Hypertonic Saline with or without Furosemide on Brain Water Content in Normal Rats

Author:

Wang Liang Chao1,Papangelou Alexander2,Lin Christopher3,Mirski Marek A.4,Gottschalk Allan5,Toung Thomas J. K.4

Affiliation:

1. Assistant Professor, Department of Surgery, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China.

2. Assistant Professor, Department of Anesthesiology and Critical Care Medicine and Department of Neurology

3. Research Assistant

4. Professor

5. Associate Professor, Department of Anes thesiology and Critical Care Medicine, Department of Neurology, and Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland.

Abstract

Abstract Background: Mannitol and hypertonic saline (HS) are used by clinicians to reduce brain water and intracranial pressure and have been evaluated in a variety of experimental and clinical protocols. Administering equivolume, equiosmolar solutions in healthy animals could help produce fundamental data on water translocation in uninjured tissue. Furthermore, the role of furosemide as an adjunct to osmotherapy remains unclear. Methods: Two hundred twenty isoflurane-anesthetized rats were assigned randomly to receive equivolume normal saline, 4.2% HS (1,368 mOsm/L 25% mannitol (1,375 mOsm/L), normal saline plus furosemide (8 mg/kg), or 4.2% HS plus furosemide (8 mg/kg) over 45 min. Rats were killed at 1, 2, 3, and 5 h after completion of the primary infusion. Outcome measurements included body weight; urinary output; serum and urinary osmolarity and electrolytes; and brain, lung, skeletal muscle, and small bowel water content. Results: In the mannitol group, the mean water content of brain tissue during the experiment was 78.0% (99.3% CI, 77.9–78.2%), compared to results from the normal saline (79.3% [99.3% CI, 79.1–79.5%]) and HS (78.8% [99.3% CI, 78.6–78.9%]) groups (P < 0.001), whereas HS plus furosemide yielded 78.0% (99.3% CI, 77.8–78.2%) (P = 0.917). After reaching a nadir at 1 h, brain water content increased at similar rates for mannitol (0.27%/h [99.3% CI, 0.14–0.40%/h]) and HS (0.27%/h [99.3% CI, 0.17–0.37%/h]) groups (P = 0.968). Conclusions: When compared to equivolume, equiosmolar administration of HS, mannitol reduced brain water content to a greater extent over the entire course of the 5-h experiment. When furosemide was added to HS, the brain-dehydrating effect could not be distinguished from that of mannitol.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference38 articles.

1. The immediate and long-term effects of mannitol and glycerol: A comparative experimental study.;Acta Neurochir (Wien),1991

2. Effect of mannitol on intracranial pressure in focal cerebral ischemia: An experimental study in a rat.;Mater Med Pol,1991

3. Rebound swelling of astroglial cells exposed to hypertonic mannitol.;Anesthesiology,1998

4. Passage of mannitol into the brain around gliomas: A potential cause of rebound phenomenon. A study on 21 patients.;J Neurosurg Sci,2006

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3