Volatile Anesthetic Effects on Midbrain-elicited Locomotion Suggest that the Locomotor Network in the Ventral Spinal Cord Is the Primary Site for Immobility

Author:

Jinks Steven L.1,Bravo Milo2,Hayes Shawn G.3

Affiliation:

1. Assistant Professor.

2. Staff Research Associate, Department of Anesthesiology and Pain Medicine, University of California School of Medicine, Davis.

3. Assistant Professor, Heart and Vascular Institute, Pennsylvania State University, Hershey Medical Center, Hershey, Pennsylvania.

Abstract

Background Volatile anesthetics produce immobility primarily by action in the spinal cord; however, anesthetic effects among different neuronal classes located in different spinal regions, and how they relate to immobility, are not understood. Methods In decerebrated rats, effects of isoflurane and halothane on movement elicited by electrical microstimulation of the mesencephalic locomotor region (MLR) were assessed in relation to minimum alveolar concentration (MAC). Anesthetic effects on step frequency and isometric limb force were measured. The authors also examined effects of MLR stimulation on responses of nociceptive dorsal horn neurons and limb force responses to tail clamp. Results Mean isoflurane requirements to block MLR-elicited stepping were slightly but significantly greater than MAC by 10%. Mean halothane requirements to block MLR-elicited stepping were greater than those for isoflurane and exceeded MAC by 20%. From 0.4 to 1.3 MAC (but not 0.0 to 0.4 MAC), there was a dose-dependent reduction in the frequency and force of hind limb movements elicited by MLR stimulation during both anesthetics. MLR stimulation inhibited noxious stimulus evoked responses of dorsal horn neurons by approximately 80%. Aptly, MLR stimulation produced analgesia that outlasted the midbrain stimulus by at least 15 s, as indicated by an 81% reduction in hind limb force elicited noxious tail clamp. Conclusions Because electrical stimulation of the MLR elicits movement independent of dorsal horn activation, the immobilizing properties of isoflurane and halothane are largely independent of action in the dorsal horn. The results suggest that volatile anesthetics produce immobility mainly by action on ventral spinal locomotor networks.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference34 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3