Propofol Facilitates Glutamatergic Transmission to Neurons of the Ventrolateral Preoptic Nucleus

Author:

Li Ke Y.1,Guan Yan-zhong1,Krnjević Kresimir2,Ye Jiang H.3

Affiliation:

1. Postdoctoral Fellow.

2. Professor, Department of Physiology, McGill University, Montreal, Quebec, Canada.

3. Professor, Departments of Anesthesiology and Pharmacology and Physiology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School.

Abstract

Background There is much evidence that the sedative component of anesthesia is mediated by gamma-aminobutyric acid type A (GABA(A)) receptors on hypothalamic neurons responsible for arousal, notably in the tuberomammillary nucleus. These GABA(A) receptors are targeted by gamma-aminobutyric acid-mediated (GABAergic) neurons in the ventrolateral preoptic area (VLPO): When these neurons become active, they inhibit the arousal-producing nuclei and induce sleep. According to recent studies, propofol induces sedation by enhancing VLPO-induced synaptic inhibition, making the target cells more responsive to GABA(A). The authors explored the possibility that propofol also promotes sedation less directly by facilitating excitatory inputs to the VLPO GABAergic neurons. Methods Spontaneous excitatory postsynaptic currents were recorded from VLPO cells-principally mechanically isolated, but also in slices from rats. Results In isolated VLPO GABAergic neurons, propofol increased the frequency of glutamatergic spontaneous excitatory postsynaptic currents without affecting their mean amplitude. The action of propofol was mimicked by muscimol and prevented by gabazine, respectively a specific agonist and antagonist at GABA(A) receptors. It was also suppressed by bumetanide, a blocker of Na-K-Cl cotransporter-mediated inward Cl transport. In slices, propofol also increased the frequency of spontaneous excitatory postsynaptic currents and, at low doses, accelerated firing of VLPO cells. Conclusion Propofol induces sedation, at least in part, by increasing firing of GABAergic neurons in the VLPO, indirectly by activation of GABA(A) receptors on glutamatergic afferents: Because these axons/terminals have a relatively high internal Cl concentration, they are depolarized by GABAergic agents such as propofol, which thus enhance glutamate release.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference53 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3