Bumetanide Alleviates Epileptogenic and Neurotoxic Effects of Sevoflurane in Neonatal Rat Brain

Author:

Edwards David A.1,Shah Hina P.2,Cao Wengang3,Gravenstein Nikolaus4,Seubert Christoph N.5,Martynyuk Anatoly E.6

Affiliation:

1. Resident.

2. Research Assistant.

3. Postdoctoral Associate.

4. Professor.

5. Associate Professor, Department of Anesthesiology, University of Florida, and

6. Associate Professor, Department of Anesthesiology and The McKnight Brain Institute, University of Florida.

Abstract

Background We tested the hypothesis that in newborn rats, sevoflurane may cause seizures, neurotoxicity, and impairment in synaptic plasticity-effects that may be diminished by the Na-K-2Cl cotransporter 1 inhibitor, bumetanide. Methods Electroencephalography, activated caspase-3, and hippocampal long-term potentiation were measured in rats exposed to 2.1% sevoflurane for 0.5-6 h at postnatal days 4-17 (P4-P17). Results Arterial blood gas samples drawn at a sevoflurane concentration of 2.1% showed no evidence of either hypoxia or hypoventilation in spontaneously breathing rats. Higher doses of sevoflurane (e.g., 2.9%) caused respiratory depression. During anesthesia maintenance, the electroencephalography exhibited distinctive episodes of epileptic seizures in 40% of P4-P8 rats. Such seizure-like activity was not detected during anesthesia maintenance in P10-P17 rats. Emergence from 3 h of anesthesia with sevoflurane resulted in tonic/clonic seizures in some P10-P17 rats but not in P4-P8 rats. Bumetanide (5 micromol/kg, intraperitoneally) significantly decreased seizures in P4-P9 rats but did not affect the emergence seizures in P10-P17 rats. Anesthesia of P4 rats with sevoflurane for 6 h caused a significant increase in activated caspase-3 and impairment of long-term potentiation induction measured at 1 and 14-17 days after exposure to sevoflurane, respectively. Pretreatment of P4 rats with bumetanide nearly abolished the increase in activated caspase-3 but did not alleviate impairment of long-term potentiation. Conclusion These results support the possibility that excitatory output of sevoflurane-potentiated gamma-aminobutyric acid type A/glycine systems may contribute to epileptogenic and neurotoxic effects in early postnatal rats.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3