Delaying Blood Transfusion in Experimental Acute Anemia with a Perfluorocarbon Emulsion

Author:

Cabrales Pedro1,Carlos Briceño Juan2

Affiliation:

1. Assistant Professor, Department of Bioengineering, University of California, San Diego, La Jolla, California.

2. Professor, Department of Mechanical Engineering, Universidad de los Andes, Bogota, Colombia.

Abstract

Background To avoid unnecessary blood transfusions, physiologic transfusion triggers, rather than exclusively hemoglobin-based transfusion triggers, have been suggested. The objective of this study was to determine systemic and microvascular effects of using a perfluorocarbon-based oxygen carrier (PFCOC) to maintain perfusion and oxygenation during extreme anemia. Methods The hamster (weight, 55-65 g) window chamber model was used. Two isovolemic hemodilution steps were performed using hydroxyethyl starch, 10%, at normoxic conditions to a hematocrit of 19% (hemoglobin, 5.5 g/dl), the point at which the transfusion trigger was reached. Two additional hemodilution exchanges using the PFCOC (Oxycyte) and increasing the fraction of inspired oxygen to 1.0 were performed to reduce the hematocrit to 11% (hemoglobin, 3.8 g/dl) and 6% (hemoglobin, 2.0 g/dl), respectively. No control group was used in the study because this concentration of hemodilution is lethal with conventional plasma expanders. Systemic parameters, microvascular perfusion, functional capillary density, and oxygen tensions across the microvascular network were measured. Results At 6% hematocrit, the PFCOC maintained mean arterial pressure, cardiac output, systemic oxygen delivery, and oxygen consumption. As hematocrit was decreased from 11% to 6%, functional capillary density, calculated microvascular oxygen delivery, and oxygen consumption decreased; and the oxygen extraction ratio was close to 100%. Peripheral tissue oxygenation was not predicted by systemic oxygenation. Conclusions The PFCOC, in conjunction with hyperoxia, was able to sustain organ function and partially provide systemic oxygenation during extreme anemia during the observation period. The PFCOC can work as a bridge until erythrocytes are available for transfusion or when additional oxygen is required, despite the possible limitations in peripheral tissue oxygenation.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference37 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3