Isoflurane Decreases Self-renewal Capacity of Rat Cultured Neural Stem Cells

Author:

Culley Deborah J.1,Boyd Justin D.2,Palanisamy Arvind3,Xie Zhongcong4,Kojima Koji1,Vacanti Charles A.5,Tanzi Rudolph E.6,Crosby Gregory7

Affiliation:

1. Assistant Professor.

2. Scientist, Laboratory for Drug Discovery in Neurodegeneration, Harvard NeuroDiscovery Center, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts.

3. Instructor.

4. Associate Professor, Department of Anesthesia, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts.

5. Vandam/Covino Professor of Anesthesia.

6. Professor, Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Genetics and Aging Research Unit, Charlestown, Massachusetts.

7. Associate Professor, Department of Anesthesia, Harvard Medical School, Brigham & Women's Hospital, Boston, Massachusetts.

Abstract

Background In models, isoflurane produces neural and behavioral deficits in vitro and in vivo. This study tested the hypothesis that neural stem cells are adversely affected by isoflurane such that it inhibits proliferation and kills these cells. Methods Sprague-Dawley rat embryonic neural stem cells were plated onto 96-well plates and treated with isoflurane, 0.7, 1.4, or 2.8%, in 21% oxygen for 6 h and fixed either at the end of treatment or 6 or 24 h later. Control plates received 21% oxygen under identical conditions. Cell proliferation was assessed immunocytochemically using 5-ethynyl-2'-deoxyuridine incorporation and death by propidium iodide staining, lactate dehydrogenase release, and nuclear expression of cleaved caspase 3. Data were analyzed at each concentration using an ANOVA; P < 0.05 was considered significant. Results Isoflurane did not kill neural stem cells by any measure at any time. Isoflurane, 1.4 and 2.8%, reduced cell proliferation based upon 5-ethynyl-2'-deoxyuridine incorporation, whereas isoflurane, 0.7%, had no effect. At 24 h after treatment, the net effect was a 20-30% decrease in the number of cells in culture. Conclusions Isoflurane does not kill neural stem cells in vitro. At concentrations at and above the minimum alveolar concentrations required for general anesthesia (1.4 and 2.8%), isoflurane inhibits proliferation of these cells but has no such effect at a subminimum alveolar concentration (0.7%). These data imply that dosages of isoflurane at and above minimum alveolar concentrations may reduce the pool of neural stem cells in vivo but that lower dosages may be devoid of such effects.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference26 articles.

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3