Modeling the Non–Steady State Respiratory Effects of Remifentanil in Awake and Propofol-sedated Healthy Volunteers

Author:

Olofsen Erik1,Boom Merel2,Nieuwenhuijs Diederik3,Sarton Elise4,Teppema Luc5,Aarts Leon6,Dahan Albert6

Affiliation:

1. Research Associate.

2. Ph.D. Student.

3. Resident, Department of Anesthesiology, Leiden University Medical Center. Current position: Staff Anesthesiologist, St. Antonius Ziekenhuis, Nieuwegein, The Netherlands.

4. Staff Anesthesiologist.

5. Associate Professor.

6. Professor, Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

Background Few studies address the dynamic effect of opioids on respiration. Models with intact feedback control of carbon dioxide on ventilation (non-steady-state models) that correctly incorporate the complex interaction among drug concentration, end-tidal partial pressure of carbon dioxide concentration, and ventilation yield reliable descriptions and predictions of the behavior of opioids. The authors measured the effect of remifentanil on respiration and developed a model of remifentanil-induced respiratory depression. Methods Ten male healthy volunteers received remifentanil infusions with different infusion speeds (target concentrations: 4-9 ng/ml; at infusion rates: 0.17-9 ng x ml x min) while awake and at the background of low-dose propofol. The data were analyzed with a nonlinear model consisting of two additive linear parts, one describing the depressant effect of remifentanil and the other describing the stimulatory effect of carbon dioxide on ventilation. Results The model adequately described the data including the occurrence of apnea. Most important model parameters were as follows: C50 for respiratory depression 1.6 +/- 0.03 ng/ml, gain of the respiratory controller (G) 0.42 - 0.1 l x min x Torr, and remifentanil blood effect site equilibration half-life (t(1/2)ke0) 0.53 +/- 0.2 min. Propofol caused a 20-50% reduction of C50 and G but had no effect on t(1/2)ke0. Apnea occurred during propofol infusion only. A simulation study revealed an increase in apnea duration at infusion speeds of 2.5-0.5 ng x ml x min followed by a reduction. At an infusion speed of < or = 0.31 ng x ml x min, no apnea was seen. Conclusions The effect of varying remifentanil infusions with and without a background of low-dose propofol on ventilation and end-tidal partial pressure of carbon dioxide concentration was described successfully using a non-steady-state model of the ventilatory control system. The model allows meaningful simulations and predictions.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference29 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3