Affiliation:
1. Ph.D. Student.
2. Assistant Professor.
3. Professor, Chair, Department of Experimental and Clinical Experimental Anesthesiology, University of Amsterdam, Amsterdam, The Netherlands.
4. Associate Professor, Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology, Academic Medical Center.
Abstract
Experimental research in cardiac and neuronal tissue has shown that besides volatile anesthetics and xenon, the nonanesthetic noble gas helium also reduces ischemia-reperfusion damage. Even though the distinct mechanisms of helium-induced organ protection are not completely unraveled, several signaling pathways have been identified. Beside the protective effects on heart and brain that are mainly obtained by different pre- and postconditioning protocols, helium also exerts effects in the lungs, the immune system, and the blood vessels. Obviously, this noble gas is biochemically not inert and exerts biologic effects, although until today the question remains open on how these changes are mediated. Because of its favorable characteristics and the lack of hemodynamic side effects, helium is suitable for use also in critically ill patients. This review covers the cellular effects of helium, which may lead to new clinical strategies of tissue salvage in ischemia-reperfusion situations, both within and outside the perioperative setting.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献