Expression of Signal Transduction Genes Differs after Hypoxic or Isoflurane Preconditioning of Rat Hippocampal Slice Cultures

Author:

Bickler Philip E.1,Fahlman Christian S.2

Affiliation:

1. Professor.

2. Research Scientist, Department of Anesthesia and Perioperative Care, University of California, San Francisco.

Abstract

Background Preconditioning neurons with noninjurious hypoxia (hypoxic preconditioning, HPC) or the anesthetic isoflurane (APC) induces tolerance of severe ischemic stress. The mechanisms of both types of preconditioning in the hippocampus require moderate increases in intracellular Ca and activation of protein kinase signaling. The authors hypothesized that the expression of signal transduction genes would be similar after APC and HPC. Methods Hippocampal slice cultures prepared from 9-day-old rats were preconditioned with hypoxia (5 min of 95% nitrogen/5% carbon dioxide) or 1% isoflurane in air/5% carbon dioxide for 1 h. A day later, cultures were subjected to 10 min oxygen and glucose deprivation (simulated ischemia). Intracellular Ca, measured in CA1 neurons at the completion of preconditioning, and cell death in CA1, CA3, and dentate regions was assessed 48 h after simulated ischemia. Message RNA encoding 119 signal transduction genes was quantified with rat complimentary DNA microarrays from pre-oxygen-glucose deprivation samples. Results Both APC and HPC increased intracellular Ca approximately 50 nm and decreased CA1, CA3, and dentate neuron death by about 50% after simulated ischemia. Many signaling genes were increased after preconditioning, with hypoxia increasing more apoptosis/survival genes (8 of 10) than isoflurane (0 of 10). In contrast, isoflurane increased more cell cycle/development/growth genes than did hypoxia (8 of 14 genes, vs. 1 of 14). Conclusions Despite sharing similar upstream signaling and neuroprotective outcomes, the genomic response to APC and HPC is different. Increased expression of antiapoptosis genes after HPC and cell development genes after APC has implications both for neuroprotection and long-term effects of anesthetics.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference45 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3