Neuronal Preconditioning by Inhalational Anesthetics

Author:

Bantel Carsten1,Maze Mervyn2,Trapp Stefan3

Affiliation:

1. Clinical Fellow.

2. Sir Ivan Magill Professor of Anaesthetics.

3. Senior Lecturer, Department of Anaesthetics, Pain Medicine and Intensive Care, Chelsea and Westminster Hospital, Imperial College London, and Biophysics Section, Blackett Laboratory, Imperial College London.

Abstract

Background Ischemic preconditioning is an important intrinsic mechanism for neuroprotection. Preconditioning can also be achieved by exposure of neurons to K+ channel-opening drugs that act on adenosine triphosphate-sensitive K+ (K(ATP)) channels. However, these agents do not readily cross the blood-brain barrier. Inhalational anesthetics which easily partition into brain have been shown to precondition various tissues. Here, the authors explore the neuronal preconditioning effect of modern inhalational anesthetics and investigate their effects on K(ATP) channels. Methods Neuronal-glial cocultures were exposed to inhalational anesthetics in a preconditioning paradigm, followed by oxygen-glucose deprivation. Increased cell survival due to preconditioning was quantified with the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide reduction test. Recombinant plasmalemmal K(ATP) channels of the main neuronal type (Kir6.2/SUR1) were expressed in HEK293 cells, and the effects of anesthetics were evaluated in whole cell patch clamp recordings. Results Both sevoflurane and the noble gas xenon preconditioned neurons at clinically used concentrations. The effect of sevoflurane was independent of K(ATP) channel activation, whereas the effect of xenon required the opening of plasmalemmal K(ATP) channels. Recombinant K(ATP) channels were activated by xenon but inhibited by halogenated volatiles. Modulation of mitochondrial K-ATP channels did not affect the activity of K(ATP) channels, thus ruling out an indirect effect of volatiles via mitochondrial channels. Conclusions The preconditioning properties of halogenated volatiles cannot be explained by their effect on K(ATP) channels, whereas xenon preconditioning clearly involves the activation of these channels. Therefore, xenon might mimic the intrinsic mechanism of ischemic preconditioning most closely. This, together with its good safety profile, might suggest xenon as a viable neuroprotective agent in the clinical setting.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

Reference57 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3