Affiliation:
1. Assistant Professor
2. Lecturer
3. Associate Professor
4. Professor, Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan.
5. Professor, Department of Anesthesiology
Abstract
Abstract
Background:
Oxidative stress is implicated in pathogenesis of cardiac reperfusion injury, characterized by cellular Ca2+ overload and hypercontracture. Volatile anesthetics protect the heart against reperfusion injury primarily by attenuating Ca2+ overload. This study investigated electrophysiological mechanisms underlying cardioprotective effects of sevoflurane against oxidative stress-induced cellular injury.
Methods:
The cytosolic Ca2+ levels and cell morphology were assessed in mouse ventricular myocytes, using confocal fluo-3 fluorescence imaging, whereas membrane potentials and L-type Ca2+ current (ICa,L) were recorded using whole-cell patch-clamp techniques. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II was examined by Western blotting.
Results:
Exposure to H2O2 (100 μm) for 15 min evoked cytosolic Ca2+ elevation and hypercontracture in 56.8% of ventricular myocytes in 11 experiments, which was partly but significantly reduced by nifedipine, tetracaine, or SEA0400. Sevoflurane prevented H2O2-induced cellular Ca2+ overload in a concentration-dependent way (IC50 = 1.35%). Isoflurane (2%) and desflurane (10%) also protected ventricular myocytes by a degree similar to sevoflurane (3%). Sevoflurane suppressed H2O2-induced electrophysiological disturbances, including early afterdepolarizations, voltage fluctuations in resting potential, and abnormal automaticities. H2O2 significantly enhanced ICa,L by activating Ca2+/calmodulin-dependent protein kinase II, and subsequent addition of sevoflurane, isoflurane, or desflurane similarly reduced ICa,L to below baseline levels. Phosphorylated Ca2+/calmodulin-dependent protein kinase II increased after 10-min incubation with H2O2, which was significantly prevented by concomitant administration of sevoflurane.
Conclusions:
Sevoflurane protected ventricular myocytes against H2O2-induced Ca2+ overload and hypercontracture, presumably by affecting multiple Ca2+ transport pathways, including ICa,L, Na+/Ca2+ exchanger and ryanodine receptor. These actions appear to mediate cardioprotection against reperfusion injury associated with oxidative stress.
Publisher
Ovid Technologies (Wolters Kluwer Health)
Subject
Anesthesiology and Pain Medicine
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献