Sevoflurane Protects Ventricular Myocytes against Oxidative Stress-induced Cellular Ca2+ Overload and Hypercontracture

Author:

Kojima Akiko1,Kitagawa Hirotoshi2,Omatsu-Kanbe Mariko3,Matsuura Hiroshi4,Nosaka Shuichi5

Affiliation:

1. Assistant Professor

2. Lecturer

3. Associate Professor

4. Professor, Department of Physiology, Shiga University of Medical Science, Otsu, Shiga, Japan.

5. Professor, Department of Anesthesiology

Abstract

Abstract Background: Oxidative stress is implicated in pathogenesis of cardiac reperfusion injury, characterized by cellular Ca2+ overload and hypercontracture. Volatile anesthetics protect the heart against reperfusion injury primarily by attenuating Ca2+ overload. This study investigated electrophysiological mechanisms underlying cardioprotective effects of sevoflurane against oxidative stress-induced cellular injury. Methods: The cytosolic Ca2+ levels and cell morphology were assessed in mouse ventricular myocytes, using confocal fluo-3 fluorescence imaging, whereas membrane potentials and L-type Ca2+ current (ICa,L) were recorded using whole-cell patch-clamp techniques. Phosphorylation of Ca2+/calmodulin-dependent protein kinase II was examined by Western blotting. Results: Exposure to H2O2 (100 μm) for 15 min evoked cytosolic Ca2+ elevation and hypercontracture in 56.8% of ventricular myocytes in 11 experiments, which was partly but significantly reduced by nifedipine, tetracaine, or SEA0400. Sevoflurane prevented H2O2-induced cellular Ca2+ overload in a concentration-dependent way (IC50 = 1.35%). Isoflurane (2%) and desflurane (10%) also protected ventricular myocytes by a degree similar to sevoflurane (3%). Sevoflurane suppressed H2O2-induced electrophysiological disturbances, including early afterdepolarizations, voltage fluctuations in resting potential, and abnormal automaticities. H2O2 significantly enhanced ICa,L by activating Ca2+/calmodulin-dependent protein kinase II, and subsequent addition of sevoflurane, isoflurane, or desflurane similarly reduced ICa,L to below baseline levels. Phosphorylated Ca2+/calmodulin-dependent protein kinase II increased after 10-min incubation with H2O2, which was significantly prevented by concomitant administration of sevoflurane. Conclusions: Sevoflurane protected ventricular myocytes against H2O2-induced Ca2+ overload and hypercontracture, presumably by affecting multiple Ca2+ transport pathways, including ICa,L, Na+/Ca2+ exchanger and ryanodine receptor. These actions appear to mediate cardioprotection against reperfusion injury associated with oxidative stress.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Anesthesiology and Pain Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3